Wireless Communication

Chapter: Network Concepts and Standards, 802.11 WLAN

IEEE 802.11 Task Groups for further development

contributed by Paul Vrancken, CoSiNe, Philips Research

 The 802.11 work group’s charter is to develop Physical layer and MAC sub-layer specifications for wireless Local Area Networks (LANs) carried out under Project Authorization Requests (PAR) approved by the IEEE Standards Board and assigned to 802.11 work group (WG). Individual standards activities within 802.11 WG are carried out by Task Groups (TG). These Task Groups within the 802.11 Working Group work on the specifications, seeking to develop the highest quality interoperable standards for wireless Internet. These specifications focus on improving service levels and resolving compatibility issues between manufacturers of wireless LAN equipment. Since the initial establishment of the 802.11 standard working group, it has been extended with numerous task groups, designated by letters. Some groups have completed their tasks, and the results have been added to the original standards. The details of each task group are listed below. Note that many TG are still under PAR and thus subject to change.

   802.11a:  Development of a High speed Physical Layer at the 5 GHz band (54 Mb/s).
802.11b:  Development of a High speed Physical Layer at the 2.4 GHz band (11 Mb/s).  
802.11c:  Development of Internal Sub Layer Service.
802.11d:  Specification for operation in additional domains.
802.11e:  Medium Access Control (MAC) Enhancements for Quality of Service (QoS).
802.11f: Recommended practices for an Inter-Access Point Protocol (IAPP).
   802.11g: Higher speed Physical Layer Extension in the 2.4 GHz band (54 Mb/s).
802.11h: Spectrum and Power Management extensions in the 5 GHz band in Europe.
802.11i:  Specification for Enhanced Security and Authentication.
 
 In progress (August 2004):
 
   802.11j:   Channel selection for 4.9 GHz and 5 GHz to conform to the Japanese regulations.
   802.11k:  Radio Resource Measurement.
   802.11l:   Not used
   802.11m: Maintenance 
802.11n:  Provide improvements Throughput
   802.11o:  Voice over WLAN
802.11p:  Wireless Access for the Vehicular Environment
802.11q:  VLAN Tag
   802.11r:  Enhancements for Fast BBS Transition
802.11s:  Enhancements for ESS Mesh Networking.
802.11t:  Wireless Performance Prediction (Recommended Practice)

IEEE 802.11a: High-speed Physical Layer in the 5GHz band

 The IEEE 802.11a Physical Layer (PHY) is the layer closest to the media in the OSI stack. The PHY provides the connection between the MAC and the wireless media. The physical layer consists of two sub layers, the PLCP and the PMD. IEEE 802.11a and b use the same MAC but differ in the PHY. The reason is that IEEE 802.11a uses a technique called Orthogonal Frequency Division Multiplexing (OFDM) while IEEE 802.11b uses the High Rate Direct Sequence Spread Spectrum (DSSS) system for transmission in the wireless medium. The available data rates are 6, 9, 12, 18, 24, 36, 48, and 54 Mbps where the support of transmitting and receiving at data rates of 6, 12, and 24 Mbps is mandatory. The system uses 52 sub carriers that are modulated using binary or quadrature phase shift keying (BPSK/QPSK), 16-quadrature amplitude modulation (QAM), or 64-QAM. OFDM therefore improves the WLAN capacity and data rates up to 54 Mb/s can be achieved.

IEEE 802.11b: Higher speed Physical Layer extension in the 2.4 GHz band

 The IEEE 802.11b Physical Layer (PHY) is the layer closest to the media in the OSI stack. The PHY provides the connection between the MAC and the wireless media. The physical layer consists of two sub layers, the PLCP and the PMD. As mentioned IEEE 802.11a and b use the same MAC but differ in the PHY. The reason is that IEEE 802.11a uses a technique called Orthogonal Frequency Division Multiplexing (OFDM) while IEEE 802.11b uses the High Rate Direct Sequence Spread Spectrum (DSSS) system for transmission in the wireless medium. 802.11b defines two higher data rates of 5.5 and 11Mbps.  The changes in the physical layer to support these two data rates only affect the DSSS PHY layer since FHSS cannot support these data rates. 

The chip sequence and the coding technique are different than the ones used for 1 Mbps and 2 Mbps data rate.  The 11-chip Barker code is replaced by 64 8-chip codes using complementary code keying. The long PLCP preamble which has to be transmitted at 1 Mbps according to the original IEEE 802.11 incurred an important overhead for DSSS systems faster than 1 Mbps.  802.11b provides an optional mode which uses a shorter preamble to lessen the overhead. 

IEEE 802.11c: Development of Internal Sub Layer Service

 This supplement to ISO/IEC 10038 (IEEE 802.1D) adds a sub clause under 2.5 Support of the Internal Sub-Layer Service by specific MAC Procedures to cover bridge operation with IEEE 802.11 MAC.

IEEE 802.11d: Specification for operation in additional regulatory domains

 This supplement defines the physical layer requirements (channelization, hopping patterns), new values for current MIB attributes, and other requirements to extend the operation of 802.11 WLANs to new regulatory domains (countries).

IEEE 802.11e: Medium Access Control Enhancements for Quality of Service.

 Quality of service (QoS) demands guaranteed constant bit rate channel allocations with a constant delay and minimum jitter. The original 802.11 media access control protocol was designed with two modes of communication for wireless stations. The first, Distributed Coordination Function (DCF), is based on Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). In CSMA/CA, once a station detects that the medium is free it begins to decrement its backoff counter. Each station maintains a Contention Window (CW) that is used to determine the number of slot times a station has to wait before transmission. The backoff counter only begins to decrease after the medium has been free for a DIFS period (DCF Inter-Frame Space). If the back-off counter expires and the medium is still free the station begins to transmit. In case of a collision the station randomly picks a new back-off period from its CW, which grows in a binary exponential fashion like Ethernet, and then attempts to gain control of the medium again. Due to collisions and the binary backoff mechanism , there are no transmit guarantees with DCF.

An optional second mode, Point Coordination Function (PCF), supports time-sensitive traffic flows. Wireless access points periodically send beacon frames to communicate network identification and management parameters specific to the wireless network. Between the sending of beacon frames, PCF splits the time into a contention-free period and a contention period. With PCF enabled, a station can transmit data during contention-free polling periods. However, PCF hasn't been implemented widely because the technology's transmission times are unpredictable.

It can be seen from the basic DCF mechanism above, that at least two parameters can be used to provide channel access differentiation: the defer time DIFS and CW, based on which the random back off timer is generated. Lower DIFS and CW values give higher priority for channel access.

On this mechanism EDCF is also developed; instead of treating all traffic with a single DIFS value and a single (CWmin, CWmax) set, EDCF defines that the channel access has up to eight Access Categories (AC), each with its own Defer Time called Arbitrary Distributed Inter-Frame Space (AIFS) and CWmin/CWmax values. According to the draft, one or more user priorities can be assigned to one AC and normally packets belonging to the same priority share one buffering queue. This implies that no guarantees of service are provided, but EDCF essentially establishes a probabilistic priority mechanism to allocate bandwidth based on traffic categories.

 Multiple instances of this enhanced variant of DCF shall be running simultaneously in each STA. Therefore, there exist two levels of channel access contention: internal contention among traffic of different priorities inside the same STA and external contention among traffic from different STAs. Collisions may happen at both levels and are resolved similarly such that higher priority traffic will most probably obtain the channel first and lower priority traffic will have to back off. Summarizing: different values of defer timer and back off timer are used to enable prioritized channel access for different types of traffic.

IEEE 802.11f: Recommendation for an Inter-Access Point Protocol (IAPP)

 IEEE P802.11 specifies the MAC and PHY layers of a Wireless LAN system and includes the basic architecture of such systems, including the concepts of Access Points and Distribution Systems. Implementation of these concepts where purposely not defined by P802.11 because there are many ways to create a Wireless LAN system. Additionally many of the possible implementation approaches involve concepts from higher network layers. While this leaves great flexibility in Distributions System and Access Point functional design, the associated cost is that physical Access Point devices from different vendors are unlikely to inter-operate across a Distribution System due to the different approaches taken to Distribution System design.

This recommendation specifies the necessary information that needs to be exchanged between Access Points to support the P802.11 DS functions. The information exchanges required is specified for, one or more Distribution Systems; in a manner sufficient to enable the implementation of Distribution Systems containing Access Points from different vendors, which adhere to the recommended practices.

IEEE 802.11g: Further Higher Data Rate Extension in the 2,4 GHz band

 The IEEE 802.11g further enhances the Physical layer's modulation technique. It adopts the modulation scheme used by both IEEE 802.11b and IEEE 802.11a. For 802.11b compatibility, 802.11g incorporates 802.11b's Complementary Code Keying (CCK) to achieve bit transfer rates of 5.5 and 11Mbps in the 2.4Ghz band. In addition, 802.11g adopts 802.11a's Orthogonal Frequency Division Multiplexing (OFDM) for 54Mbps speeds but in the 2.4Ghz range.

802.11g also comes with a pair of optional, and incompatible, modes to achieve throughput ranges in the 22Mbps range. These are Intersil's CCK-OFDM mode with a maximum throughput of 33Mbps and TI's Packet Binary Convolutional Coding (PBCC-22), with a throughput range of 6 to 54Mbps.

IEEE 802.11h: Spectrum and transmit power management extensions in the 5 GHz band in Europe

European radio regulations requires radio local area networks (RLANs) operating in the 5 GHz band to use transmit power control, involving specification of a regulatory maximum transmit power and a mitigation requirement for each allowed channel, to reduce interference with satellite services. The TCP service is used to satisfy this regulatory requirement.

The TPC service provides for the following:

 Furthermore, European radio regulations requires radio local area networks (RLANs) operating in the 5 GHz band to implement a mechanism to avoid co-channel operation with radar systems and to ensure the uniform utilization of available channels. The DFS service is used to satisfy this regulatory requirement.

 The DFS service provides for the following: 

Along with meeting regulatory requirements, DFS and TPC can be used to improve the management, deployment and operation of WLANs. 

IEEE 802.11i: Specification for enhanced security

802.11i is a standard from the IEEE 802.11i committee that aims to solve the security flaws that haunt the 802.11a and 802.11b wireless networking standards. With wireless networks (such as 802.11b) becoming increasingly popular and the WEP (Wireless Equivalence Privacy standard, the current security standard) being exposed several times to flaws, the current wireless networks are vulnerable to hackers located within range. 802.11i addresses this problem by providing for better security with difficult to break encryption techniques and algorithms.

802.11i architecture

 The 802.11i Security has a frame work based on RSN (Robust Security Mechanism). RSN consists of two parts: 

  1. The Data Privacy Mechanism 

  2. Security Association Management. 

The Data Privacy Mechanism supports two proposed schemes: TKIP and AES. TKIP (Temporal Key Integrity) is a short-term solution that defines software patches to WEP to provide a minimally adequate level of data privacy. AES or AES-OCB (Advanced Encryption Standard and Offset Codebook) is a robust data privacy scheme and is a longer-term solution. Security Association Management is addressed by 

a) RSN Negotiation Procedures

b) IEEE 802.1x Authentication and 

c) IEEE 802.1x Key management

The 802.11i specification can be viewed as three modules in two layers. Encryption algorithms form the lower layer with TKIP and CCMP. Above the encryption algorithms is the 802.11x, which is a port based access control standard. The three modules work together to form the security system.

The key features of 802.11i are:

Advanced Encryption Standard is a symmetric iterated block cipher (uses the same key for both encryption and decryption). The algorithm makes multiple passes over the input data and outputs fixed length blocks. The AES algorithm in 802.11i uses a 128-bit encryption key. This AES based encryption standard is mandatory for 802.11i devices.

TKIP is an encryption standard designed to address all known vulnerabilities in the existing wireless standards while maintaining backward compatibility. The key features of TKIP include:

TKIP is optional in 802.11i devices but provides increased security and privacy when used.

802.11i Standard Operational Phases (SOP)

The Standard Operational Phases of a 802.11i based network client are as follows:

IEEE 802.11j: Channel selection for 4.9 GHz and 5 GHz to additionally conform to the Japanese regulations

Enhance the 802.11 standard and amendments, to add channel selection for 4.9 GHz and 5 GHz in Japan to additionally conform to the Japanese rules for radio operation.

IEEE 802.11k: Radio Resource Measurement

The goal of 802.11K is to create a Radio Resource Measurement (RRM) standard that will enable interoperable solutions for the sensing, characterizing, reacting, and adapting to WLAN signal conditions. This will result in more efficient and secure WLANs with higher quality of service (QoS).

 The original standard has a basic set of radio resource measurements for internal use only. These measurements and others are required to provide services; such as roaming, coexistence, and others; to external entities. It is necessary to provide these measurements and other information in order to manage these services from an external source.

802.11K is a pending, not yet ratified IEEE 802.11 standard that will define measurements and develop mechanisms to provide 802.11 wireless network measurement information to higher layers and new applications. The resultant standardized RRM information will enable improved management and better service for the mobile enterprise user.

Systems are increasingly mobile through the use of cellular and 802.11 WLAN technology. This has resulted in the need to know the location of wireless devices, the nature of their radio coverage, and their identity. In addition, as Voice Over IP (VOIP) becomes more widespread, the requirement to provide Enhanced 911 (E911) service is critical. Voice communications like VOIP also imposes QoS (quality of service) requirements.  Information about ports, access points (APs), wireless link capabilities, radio signal strength, and signal to noise ratios and other QoS metrics are issues that concern the 802.11K working group. As always, in 802.11 specifications, vendor interoperability will be a key focus of 802.11K.

802.11K is significant because it indicates a maturing WLAN industry that is now beginning to focus on WLAN management issues. It recognizes that to manage mobile enterprise systems there is a requirement for common data measurement and management based on that measurement. The 802.11 standards have given us WLANs that work. The goal of 802.11K is now to make wireless LANs reliable, available, and maintainable

IEEE 802.11l: Not Used 

Task Group "Letter - L" not to be used by the IEEE 802.11 Working Group for inclusion into the published standard due to possible confusion with 802.11i. 

IEEE 802.11m: Maintenance

 Maintenance of technical and editorial corrections to the 802.11-1999 Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications standard.

IEEE 802.11n: Provide improvements Throughput

Task Group N (TGn) is chartered to define "high throughput" speeds for wireless networks. The goal is a speed of at least 100 Megabits per second (Mbps) of actual throughput. This is not just the data-rate, which could be substantially higher. The two major competing proposals are TGn Sync and WwiSE. 

TG nSynch, led by Atheros with Intel, Matsushita, Philips and Sony as members, is combining MIMO (multiple in, multiple out antennas) with single and double-wide channel allotments of 20 and 40 MHz. With 40 MHz of spectrum and eight antennas (four transmit, four receive), they expect to reach 500 Mbps of raw throughput. In 5 GHz, Agere says, they could have 11 double-wide channels, while two are possible side-by-side in 2.4 GHz. Agere's proposal appears entirely backwards compatible with the single-wide, 802.11b/g channel and 2.4 GHz compatibility as a baseline.

Airgo leads a faction called the World Wide Spectrum Efficiency (WWiSE) group, which favours sticking with the 20MHz bandwidth and using advanced coding techniques and MIMO antennas.

IEEE 802.11o: Voice over WLAN

A proposed IEEE task group to be spun out of the 802.11i group that will focus on a standard for a fast handoff that is fully secure and compatible with 802.11i and WPA. Handover between different access points within the building as callers move between them. The roaming is supported in existing WiFi, however, causes a brief break in the data stream. This is insignificant to data traffic, but unacceptable for voice calls. The upcoming 802.11i standard exacerbates the situation by extending the handover time (up to70 milliseconds) which makes voice calls impossible.

IEEE 802.11p: Wireless Access for the Vehicular Environment

The scope of the proposed project is to create an amendment of IEEE 802.11 to support communication between vehicles and the roadside and between vehicles while operating at speeds up to a minimum of 200 km/h for communication ranges up to 1000 meters. The amendment will support communications in the 5 GHz bands; specifically 5.850-5.925 GHz band within North America with the aim to enhance the mobility and safety of all forms of surface transportation, including rail and marine. 

The purpose of the proposed project is to amend the existing IEEE 802.11 standard to make it suitable for interoperable communications to and between vehicles. The primary reasons for this amendment include the unique transport environments, and the very short latencies required (some applications must complete multiple data exchanges within 4 to 50ms). 

IEEE 802.11q: VLAN Tag

The IEEE 802.1Q standard defines the operation of VLAN Bridges that permit the definition, operation and administration of Virtual LAN topologies within a Bridged LAN infrastructure. The IEEE's 802.1Q standard was developed to address the problem of how to break large networks into smaller parts so broadcast and multicast traffic would not grab more bandwidth than necessary.

IEEE 802.11r: Enhancements for Fast BBS Transition

The Fast Roaming Task Group will standardize MAC layer enhancements that minimize connectivity time between a roaming WLAN unit and wired base units.  The standard will seek to foster the use of mobile, wireless VOIP phones and other time-sensitive WLAN applications by eliminating perceptible disconnections as 802.11-based handsets transition from one base station to another during a handoff.

IEEE 802.11s: Specification for ESS Mesh service

802.11s aims to define a MAC and PHY for meshed networks that improve coverage with no single point of failure. In such networks, 802.11 cellular WLAN access points relay information from one to another, hop by hop, in a router-like fashion. As you add users and access points, you add capacity. So, as in the Internet, adding nodes becomes a scalable and redundant endeavor.

IEEE 802.11t: Wireless Performance Prediction 

No 802 project today specifies metrics and measurements that can be carried out by manufacturers and vendors on 802.11 devices and systems themselves. 802.19 addresses the coexistence issues between differing 802 wireless protocols, but does not address measurements relating to performance of 802.11 devices specifically. There are no 802.11 standards that address measurement methodologies to enable benchmarking and prediction of wireless network performance. For instance, 802.11k specifies measurements and protocol changes to allow access to wireless LAN information. Further, 802.11k specifies measurements performed by the devices themselves, whereas this Recommended Practice will specify measurements that are performed on the devices by external entities, such as test equipment. Use of the Recommended Practice will increase the reliability of WLAN services by providing repeatable and uniform means to carry out measurements and prediction, thus enabling better deployment choices.

   

Wireless Communication © 1993, 2004.