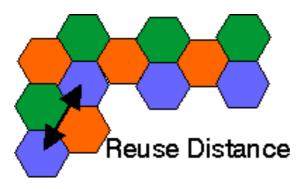
Digital Modulation for Wireless Communication

Requirements for modulation method

- Compact spectrum (many bits/sec/Hz)
- Immune to interference
 - 1.Cochannel interference
 - 2. Adjacent channel interference
- Robust against fading (frequency dispersion) and multipath (time dispersion)
- Simple implementation of transmitter and receiver
- Low-power consumption of transmit power amplifiers For instance: "constant envelope signals" allow the use of nonlinear Class C amplifiers

Spectral Efficiency of Cellular Network



Two aspects: Reuse distance R_u determines

- propagation distances of interfering signals, thus the C/I ratio, and
- the cluster size, thus the number of channels needed

C/I ratio γ is proportional to $R_u^{\ \beta}$ where β path loss exponent For a certain required protection ratio*z*, one must take

 $C/I \propto R_u^{\ \beta} > z \text{ so } R_u > z^{1/\beta}$

Number of channels *C* : proportional to R_u^2 Hence, the number of channels needed is proportional to $z^{2/\beta}$

Minimize Bandwidth of Cellular System

The system designer can choose the modulation method.

- This affects the transmit bandwidth*B* and
- the required reuse distance R_u

Typically, one can trade transmit bandwidth*B* for good immunity to interference and fading.

Optimum spectrum efficiency:

• Minimize $B z^{2/\beta}$

Extreme choices:

- DS-CDMA: large *B*, small *z*, very dense reuse
- Analog AMPS: small*B*, but large reuse distance

Detection of Digital Signals

Theory of digital communication is most detailed for channels

- with Additive White Gaussian Noise (AWGN)
- no interference
- Linear Time-Invariance
- Non-dispersive

One of the most important results is the "matched filter receiver".

However, wireless communication suffers

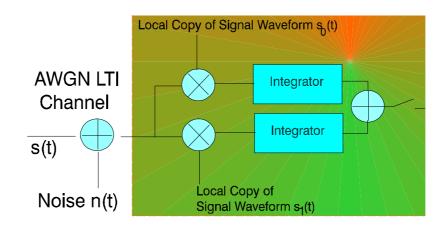
- Time varying channels
- Frequency disperisive channels
- Interference from other users

Matched Filter Receiver

• Matched Filter:

Multiply received signal by reference signalwaveform

- This is equivalent to filtering with time-inverse impulse response
- Decision Variable is "Sufficient Statistic"
- Interpretation:
 - weigh strong components heavily
 - ignore weak components



Matched Filter is optimum if

• Noise is AWGN (presence of interference may require

a more complex receiver structure)

- Channel is non-selective, Linear Time-Invariant (LTI)
- Exact time reference is available

One Shot Transmission overDispersive Channel

• How to apply Matched Filter concept for LTI AGWN channel with dispersion?

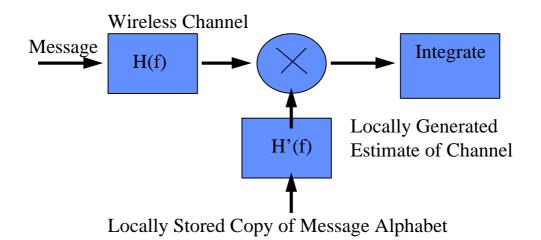


Figure: Optimum One-Shot Receiver

- Match the filter to expected *receive* waveform
- Hence, receiver needs to know channel behavior
- For CDMA this leads to the rake receiver
- Transmission of multiple signals:Intersymbol Interference occurs.

further investigation is needed, e.g. treat total bit stream as one composite symbol, correlate received signal with all possible sequences

Transmission over slowly fading, nondispersive channel

Assumptions

- No ISI
- Perfect Synchronization
- Fading affects only received energy per bit Amplitude is Rician distributed, phase is known

Definitions

• Instantaneous BER:

BER experienced at a particular location

• Local-mean BER:

BER averaged overmultipath fading fading

 Fast fading and slow fading: fast/slow compared to symbol duration

fast/slow compared to block duration

Effect of Fading on BER

For Very Slow Fading

- Fading increases the BER: with some probability E_b is small, even for large average E_b .
- Waterfall behavior vanishes: only a slow decrease of BER with improving C/N
- Most bit errors occur during deep fades, in<u>bursts</u>
- The burst length depends on the speed of antenna
- Stationary users do not experience burst errors, but receive constant power.

Then the BER depends highly on location

- Coding and interleaving may help
- Local-mean BER does not say so much in practice

Other Effects

- Rapid (Doppler) channel changes causes bit errors
- Doppler affects accuracy of phase reference
- Channel amplitude changes may also cause errors in QAM
- ISI due to delay spread

COHERENT BPSK

• Binary Phase Shift Keying

AAAAÆ

For 0 and 1: carrier has opposite phase

Instantaneous Bit Error Rate

- For coherent detection
- Non-selective Linear Time-Invariant (LTI) channels
- Additive White Gaussian Noise (AWGN)

$$P_b(error) = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_b}{N_0}}.$$

where

• E_b is the energy per bit

 $E_b = p_0 T_b$ with T_b the bit duration, and

• N_0 is the one-sided spectral power density of the AWGN.

 E_b / N_0 is the signal-to-noise ratio γ .

• erfc: complementary error function:erfc(k) = 2 $Q(\sqrt{2} k)$.

COHERENT BPSK

Local-mean BER

- Slowly Rayleigh-fading channel
- Exponentially distributed power
- Local-mean: Take average over the PDF of received signal power. For Rayleigh fading:

$$\overline{P}_{b} = \int_{0}^{\infty} \frac{1}{p} \exp\left\{-\frac{p}{p}\right\} \frac{1}{2} \operatorname{erfc}\left\{-\frac{pT_{b}}{N_{0}}\right\} dp$$

SO

$$\overline{P}_{b} = \frac{1}{2} - \frac{1}{2} \sqrt{\frac{\overline{p} T_{b}}{\overline{p} T_{b} + N_{0}}}$$

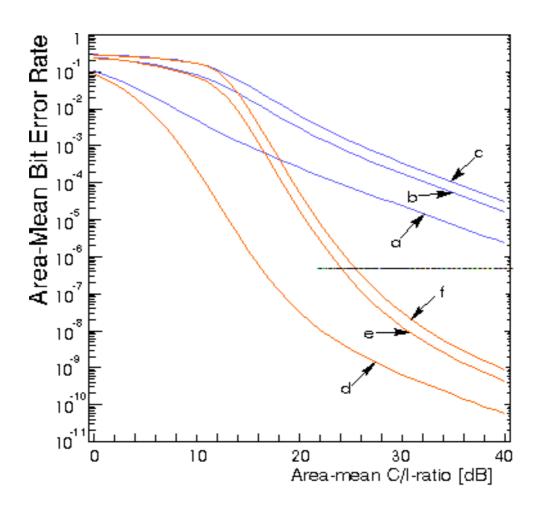
• Asymptotically

$$\overline{P}_b \rightarrow \frac{N_0}{4\overline{p}T_b} = \frac{1}{4\overline{g}}$$

Inversely proportional to signal-to-noise ratio, i.e., only a slow improvement in BER with increasing C/N

Area-mean BER

Bit error rate averaged over amplitude distribution of due to fading and shadowing



Curve c-f: 12 dB shadowing Curve b-e: 6 dB shadowing Curve a-d: no shadowing

Wanted signal: Rician fading, K=4 (a,b,c) K=16 (d,e,f) Interference: Rayleigh fading

Average BER for fading channel

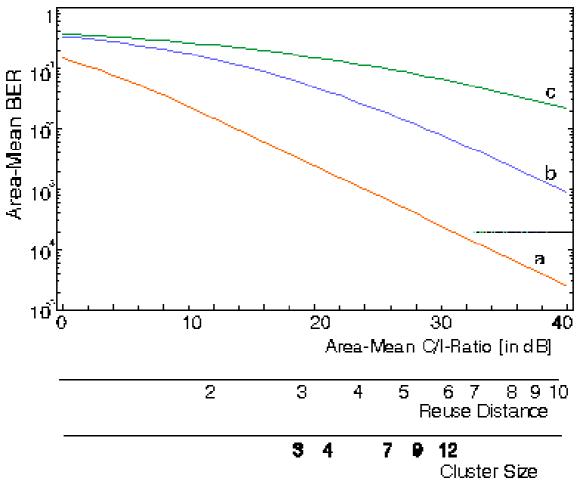


Figure: Area-mean BER versus C/I ratio.

C/I ratio can be converted into the required reuse distance (using a 40 $\log d$ path loss model) and into a cluster size.

Curve

- a Rayleigh fading, no shadowing
- b Rayleigh fading, 6 dB shadowing
- c Rayleigh fading, 12 dB shadowing

Fast Fading

There are different definitions of fast fading.

- 1) Packet Duration >> Coherence Time of Channel
- 2) Bit Duration >> Coherence Time of Channel

We use definition 1 and assume that

- Bit Duration << Coherence time of Channel
- Amplitude and phase statistically independent from bit to bit
- Receiver stays in lock

Packet Success Probability

$$\Pr(s_i) = \sum_{m=0}^{M} {L \choose m} \left[l - \overline{P_b} \right]^{L-m} \left[\overline{P_b} \right]^n$$

where

- L packet length in bits
- *M* bit error correcting code

Slow Fading

Amplitude and phase constant for duration of a packet.

⇔ During one packet time,
 motion of the mobile << wave length

Probability of not more than M bit errors in block of L bits

$$\Pr(s_i/p_0) = \sum_{m=0}^{M} \binom{L}{m} \left[1 - \frac{1}{2} \operatorname{erfc}\left\{\sqrt{\frac{p_0 T_b}{N_0}}\right\} \right]^{L-m} \left[\frac{1}{2} \operatorname{erfc}\left\{\sqrt{\frac{p_0 T_b}{N_0}}\right\} \right]^m$$

Slow Fading:

- First compute conditional Packet success probability;
- Then average over all possible channels

Fast Fading:

- First find *average* BER;
- Then compute Packet Success Probability

Performance comparison

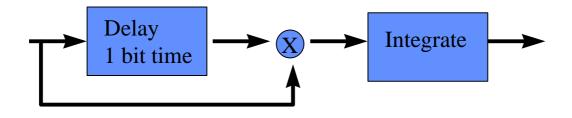
For Slow Fading

- the number of bit errors is not Binomial
- errors are highly correlated (bursts)
- error correction is less effective

Performance

- if no coding is used: slow fading performs better
- if coding is used: BER better for fast fading if C/N is sufficiently large (cellular telephony)
- with fast fading (independent bit errors), coding can change to slope of the BER vs. C/N curve.
 Increasing C/N has more effect for improving BER (Consider coding as a kind of diversity)
- better for slow fading if C/N is very small (random access, collision channels)

BER of Binary Phase Shift Keying (continued) Noncoherent Detection for BPSK



- No carrier phase reference needed:
 - simplicity of receiver
 - Advantageous in fading channel
- Typically 3 dB more sensitive to noise
- Previous bit is used as reference:

Differential encoding

- 0: no phase reversal
- 1: phase reversal
- BER analysis is complicated due to inaccurate phase of reference bit

BER analysis simple for binary DPSK

Differential BPSK

For LTI AWGN, the instantaneous BER is

$$P_b = \frac{1}{2} \exp\left\{-\frac{p_0 T_b}{N_0}\right\}$$

Local-mean BER

For a flat, slow Rayleigh-fading channel

$$\overline{P} = \frac{N_0}{2\,\overline{p}T_b + 2\,N_0}$$

• Asymptotically 3 dB more vulnerable to AWGN than coherent BPSK

Example: Noncoherent detection of D-BPSK in a slow Rayleigh fading channel

Transmit digital words of L bits. Find the probability of success for a code that can correct up to M bit errors.

The conditional probability of successful reception for slow fading is

$$\mathbf{P}(S/p) = \sum_{m=0}^{M} \binom{M}{m} \left(\frac{1}{2} \exp\left\{-\frac{pT_b}{N_0}\right\}\right)^m \left(1 - \frac{1}{2} \exp\left\{-\frac{pT_b}{N_0}\right\}\right)^{L-m}$$

Averaging over PDF of received power gives the local-mean success rate.

Closed-form solutions only exist for special cases.

Special Case

- no error correction is used (M = 0)
- A slow fading channel

The *L*-th order binomial can be rewritten as a sum of terms.

$$P(S) = \int_{0}^{\infty} \frac{1}{p} \exp\left\{-\frac{p}{p}\right\} \sum_{i=0}^{L} {\binom{L}{i}} \left(-\frac{1}{2}\right)^{i} \exp\left\{-\frac{ip T_{b}}{N_{0}}\right\} dp$$

After interchanging sum and integral, this gives

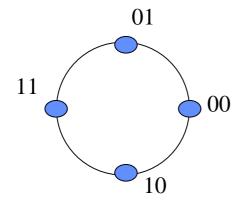
$$P(S) = \sum_{i=0}^{L} {\binom{L}{i}} (-2)^{-i} \frac{N_0}{N_0 + iT_b \overline{p}}$$
$$\rightarrow 1 - \frac{N_0}{\overline{p}T_b} \sum_{i=1}^{L} {\binom{L}{i}} \frac{1}{i} \left(-\frac{1}{2}\right)^{i}$$

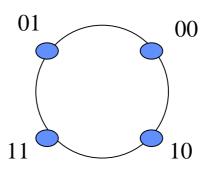
Probability of error is inversely proportional to C/N
 For slow fading, coding does not change the slope of the BER curve.

DQPSK:

Differential Quadrature Phase Shift Keying

- Used in U.S. and Japanese standards for digital telephony, because of
 - simplicity of implementation,
 - good spectrum efficiency.



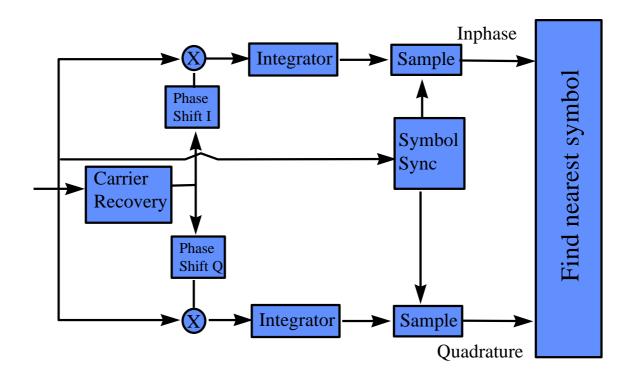


Phase of previous bits

Initial phase: $\lambda = 0$

Figure: Signal constellations Relative phase shift between successive bit intervals for D - Q PSK

QPSK Receivers



Coherent detection of QPSK signals Phase shift I: 0, Phase shift Q: $\pi/2$

For noncoherent Detection:

• Carrier recovery is replaced by a delay line

Phase shifts

	$\lambda = 0$	$\lambda=\pi/4$
Phase Shift I	0	$\pi/4$
Phase Shift Q	$\pi/2$	$-\pi/4$

Differential Quadrature Phase Shift Keying Instantaneous BER

Pierce (1962): BER for DQPSK,

given instantaneous amplitude p of wanted signal

$$P_b(error/\mathbf{r}) = Q(a,b) - \frac{1}{2}I_o(ab) \exp\left(-\frac{a^2+b^2}{2}\right)$$

where

- Q(a,b) is the Marcum Q-function, i.e.,
 - cumulative distribution of Rician pdf

- Prob (
$$x > b$$
)

$$Q(a,b) = \int_{b}^{\infty} x \exp\left(-\frac{a^2 + x^2}{2}\right) I_0(ax) dx$$

with

- I_k is the *k*-th order modified Bessel function, and
- *a* and *b* are defined as

$$a = \sqrt{\boldsymbol{g}[2 - \sqrt{2}]}$$
 and $b = \sqrt{\boldsymbol{g}[2 + \sqrt{2}]}$

DIFFERENTIAL QPSK

The local-mean BER for Rayleigh fading,

$$\overline{P_b}(error) = \frac{1}{2\sqrt{1+4\overline{g}+2\overline{g}^2}} \frac{\overline{g}\sqrt{2} + [\sqrt{2}-1][1+2\overline{g}-\sqrt{1+4\overline{g}+2\overline{g}^2}]}{\overline{g}\sqrt{2} - [\sqrt{2}-1][1+2\overline{g}-\sqrt{1+4\overline{g}+2\overline{g}^2}]}$$

COMPARISON BPSK, QPSK and FSK

COHERENT BPSK

$$P_b\left(error/\mathbf{r}_0\right) = \frac{1}{2}\operatorname{erfc} \sqrt{\frac{\frac{1}{2}r_0^2 T_b}{\sum_{i=1}^N \overline{p}_i T_b + N_0}}$$

COHERENT FSK

$$P_b\left(error/\mathbf{r}_0\right) = \frac{1}{2}\operatorname{erfc} \sqrt{\frac{\frac{1}{2}r_0^2 T_b}{\sum_{i=1}^{N} \overline{p}_i T_b + 2N_0}}$$

COHERENT QPSK

$$P_b(error/\mathbf{r}_0) = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{\frac{1}{2} r_0^2 T_b}{\sum_{i=1}^{N} \overline{p}_i T_b + 2N_0}}$$

Discussion

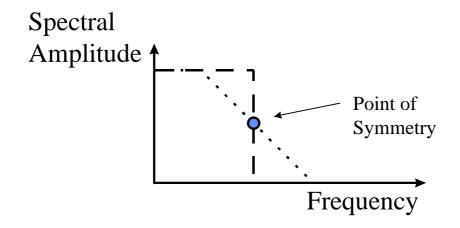
- Interference affects BER in a different way than AWGN.
- Increasing T_b reduces effect of noise but has no effect on interference
- FSK is fairly robust
- QPSK is more vulnerable to interference than expected

Intuition: take BPSK; double T_b ; insert Q-phase; reduce amplitude by $\sqrt{2}$

- interference amplitude stays constant
- amplitude of wanted signal drops 3 dB

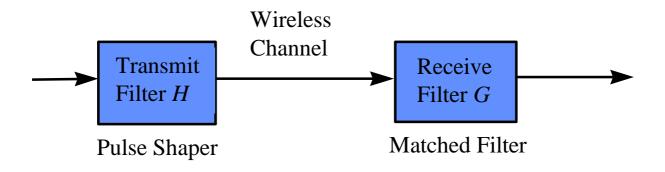
Pulse Shaping

• Pulse shaping is needed make transmit spectrum bandlimited



- Rectangular spectrum requires SINC-shaped pulses.
 Disadvantage: the addition of many randomly polarized, time-shifted SINC may give large signal peaks.
- Smoother behavior is guaranteed by raised-cosine type spectra.
- Symmetric spectral roll-off ensures absence of ISI

Square Root Nyquist



Two requirements for pulse shape

• Matched Filter

Receive Filter Characteristic = Transmitwaveform

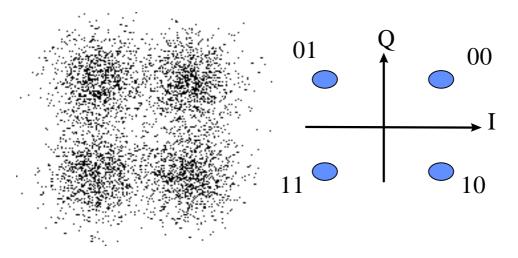
• No Intersymbol Interference

Transfer function of all filters should be symmetric.

Take the transfer function such that

- H G is symmetric
- Frequency transfer G = H

Quadrature Amplitude Modulation



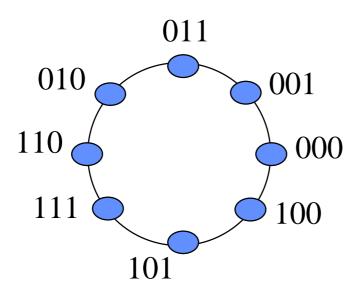
I and Q diagram of 4-QAM Signal with noise

- multi-level modulation packs more bits/sec per Hz
- But: QAM is more vulnerable to interference

Larger reuse distance needed: Less Spectrum-Efficient?

- But: QAM is more vulnerable to AWG noise
- Application:
 - Radio relay links
 - Cable TV including "Wireless Cable" Microwave Multi-Point Video Distribution

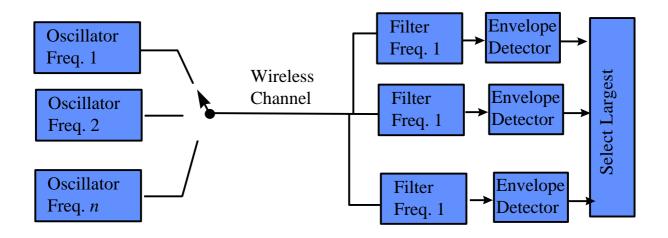
M-ary Phase Shift Keying (PSK)



M-PSK Constellation,M = 8

- For large *M*: Theoretically, BER worse than QAM
- Constant amplitude: simple power amplifiers
- Use Gray code
- QPSK is particularly popular (M = 4)
- Special case Continuous Phase- Phase Shift Keying

Frequency Shift Keying (FSK)



FSK communication system

FSK:

- Theoretically sub-optimum, compared to BPSK
- Noncoherent detection
 - Simple to implement, robust
 - Noncoherent FSK works well on fading channel
- Special case: Continous Phase FSK

Coherent Frequency Shift Keying (FSK)

Instantaneous BER

For LTI AWGN, the BER is

$$P_b(error) = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{E_b}{2N_0}}.$$

Local-mean BER

$$\overline{P}_{b}(error) = \frac{1}{2} - \frac{1}{2} \sqrt{\frac{\overline{p}_{0}T_{b}}{\overline{p}_{0}T_{b} + 2N_{0}}}$$

• Coherent FSK is 3 dB less immune to noise than BPSK (FSK is orthogonal, BPSK is antipodal)

Non-coherent FSK

Instantaneous BER

For LTI AWGN, the BER is approximately

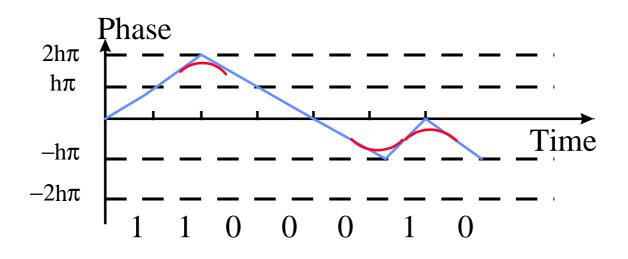
$$P_b(e) = \frac{1}{2} \exp\left\{-\frac{p_0 T_b}{2N_0}\right\}$$

Local-mean BER

$$\overline{P_b}(error) = \frac{N_0}{\overline{p_0}T_b + 2N_0}$$

Continuous Phase FSK (CP FSK)

- CP reduces spectral sidelobes
- Data is embedded in the "phase trajectory"
- Can be interpreted as Phase Shift Keying or as Frequency Shift Keying



Phase trajectory for

- Binary Continuous Phase Frequency Shift Keying (blue)
- Filtered CP FSK to reduce spectralsidelobes, MSK (Red)

Minimum Shift Keying (MSK)

- Special case of CP FSK: phase trajectory is 'filtered'
- Special case of phase modulation
 MSK can be interpreted as a form of two time-shifted binary PSK signals, each with a sinusoidal envelope
- Very compact spectrum
 h is chosen as small as possible, but large enough to ensure orthogonal signal waveforms, *h* = 0.5
- Robust against interference
- Anti-podal signals: robust against noise
- Constant envelope
- Used in GSM, Hiperlan,

MSK, QPSK and Offset QPSK

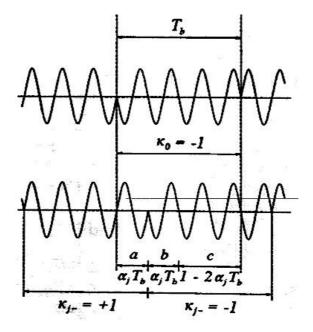
During the transmission of a single bit the MSK signal smoothly increases or reduces the signal phase by 90.

In normal QPSK, abrupt phase changes of 90° or 180° can occur at the end of each symbol transmission (2 bits)

In Offset QPSK, abrupt phase changes of 90 occur but twice as frequent as in normal QPSK.

INTERFERING BPSK SIGNALS

The effect of interference differs significantly from the effect of AWGN



Wanted BPSK signal with a single interferer.

Effect of interfering BPSK Signal depends on

- Relative amplitude
- Phase offset
- Bit timing offset

INTERFERING FADING CARRIERS

Received signal

$$r(t) = a_0 \mathbf{r}_0 \cos(\mathbf{w}_c t + \mathbf{f}) + \sum_{i=1}^N \mathbf{r}_i \cos(2\mathbf{p}(f_c + f_i)t + \mathbf{f}_i) + n_1$$

with bit $a_0 = \pm 1$. After matched filtering, the decision variable becomes

$$v = a_0 \mathbf{r}_0 T_b + \sum_{i=1}^N \mathbf{x}_i \int_0^{T_b} \cos(\mathbf{w}_i t) dt$$
$$+ \sum_{i=1}^N \mathbf{z}_i \int_0^{T_b} \sin(\mathbf{w}_i t) dt + n_I$$

where

 ξ_i and ζ_i are inphase and quadrature component of *i*-th interfering signal with $\xi_i = \rho_i \cos \theta_i$, (zero-mean Gaussian) $\zeta_i = \rho_i \sin \theta_i$ (zero-mean Gaussian) and $E\xi_i^2 = E\zeta_i^2 = i$.

Variance of the interference term $is\Sigma_i T_b^2 sincf_i T_b$.

Effect of BPSK Interference

• Bit synchronisation offset α_i , α_i uniformly distributed between 0 and 1.

Decision variable for a receiver in perfect lock to the wanted signal:

$$\boldsymbol{n} = \boldsymbol{r}_{0}\boldsymbol{k}_{0} + \sum_{i=1}^{n} \boldsymbol{z}_{i} \left\{ \boldsymbol{k}_{i} \cdot \boldsymbol{a}_{i} + \boldsymbol{k}_{i} \cdot (1 - \boldsymbol{a}_{i}) \right\} + n_{I}.$$

This contains components from previous and next bit interfering signal

Remarks:

- Interference is NOTGaussian
- Interference cancellation is easier if bit timing is synchronous
- Interference affects synchronization; it does not "average out" in the receiver PLL

Average BER for synchronization offset

• Bit-timing offset α_i is uniformly distributed for $0 < \alpha_i < 1$

If phase reversal occurs at the instant $(k + \alpha_i)T_b$,

the variance of the interference sample is $p_t(1 - 2\alpha_i)^2$.

• If there is a timing offset, interference components are a little weaker

Assumption

- "0"'s and "1"'s are equiprobable and independent,
- the interference is Rayleigh fading, and
- the receiver locks perfectly to the wanted signal

the bit error probability is

$$\overline{P}_{b} = \frac{1}{2} - \frac{1}{4} \sqrt{\frac{\overline{p}_{0} T_{b}}{\overline{p}_{0} T_{b} + \overline{p}_{1} T_{b} + N_{0}}}$$

$$\frac{1}{4}\sqrt{\frac{\overline{p}_{0}T_{b}}{\overline{p}_{0}T_{b}+\overline{p}_{1}T_{b}(1-2\boldsymbol{a}_{1})^{2}+N_{0}}}.$$

- We only modeled the effect on the decision variable, not on the timing recovery
- In practice the effect on receiver synchronization may be more significant

Average BER for Sync. Random Offset

For a Rayleigh-fading wanted signal, the average BER is

$$\overline{P}_{b} = \frac{1}{2} \cdot \frac{1}{4} \sqrt{\frac{\overline{p}_{0}T_{b}}{\overline{p}_{0}T_{b} + \overline{p}_{1}T_{b} + N_{0}}}$$
$$+ \frac{1}{4} \sqrt{\frac{\overline{p}_{0}}{\overline{p}_{1}}} \ln \left(\frac{\sqrt{\overline{p}_{0}T_{b} + \overline{p}_{1}T_{b} + N_{0}} \cdot \sqrt{\overline{p}_{1}T_{b}}}{\sqrt{\overline{p}_{0}T_{b} + N_{0}}} \right)$$

• Non-synchronous interference is effectively 1.8 dB weaker than synchronous interference

Many interfering signals

- Relevant case in Spread Spectrum systems
- Many weak signals may not have such a dramatic effect on receiver synchronization
- CLT: The sum of many weak signals is aGaussian distributed random variable.

Variance of interference

• If an interfering signal makes a phase reversal, the variance of the interference sample is

$$E[\mathbf{z}_{i}^{2}(1-2\mathbf{a}_{i})^{2}] = \frac{p_{1}}{3}$$

• If no phase reversal occurs, the variance is $E[\mathbf{z}_i^2] = \overline{p}_i$

Many interfering signals

Local-mean BER

$$\overline{P}_{b} = \frac{1}{2} - \frac{1}{2} \sqrt{\frac{\overline{p}_{0}T_{b}}{\overline{p}_{0}T_{b} + \frac{2}{3}\overline{p}_{t}T_{b} + N_{0}}}$$

For Spread Spectrum with Random Codes

$$\overline{P}_b = \frac{1}{2} - \frac{1}{2} \sqrt{\frac{\overline{p}_0 T_b}{\overline{p}_0 T_b + \frac{2}{3C} \overline{p}_t T_b + N_0}}$$

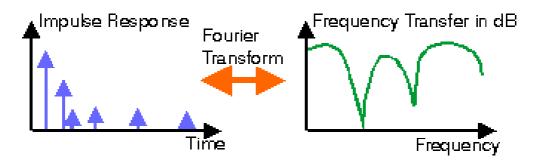
where

- *C* is the spread factor
- Chips of different users have random timing offset

Effect of Intersymbol Interference

The impulse response of a discrete-timemultipath channel.

$$h(t) = \sum_{k=0}^{\infty} h_k \boldsymbol{d}(t+k_{T_b})$$



Example of (discrete time) impulse response multipath channel and frequency transfer function.

Effect of Intersymbol Interference

Irreducable BER

- Excessively delayed reflections causeintersymbol interference (ISI).
- If unequalized, this results in a residual BER, even if no noise is present.
- If perfect synchronization to the first (resolvable) path, the decision variable becomes

$$\boldsymbol{n}_n = a_n h_0 + \sum_{k=1}^{\infty} h_k a_{n-k}$$

For a known signal power p_0 in the first resolvable path, the BER becomes

$$P_b(error/p_0) = \frac{1}{2} \operatorname{erfc} \sqrt{\frac{p_0 T_b}{\sum_{k=1}^{\infty} p_k T_b + N_0}}.$$

Effect of Intersymbol Interference

2. Noise penalty due to channel equalization

`zero forcing equalizer'

- eliminates the effect of intersymbol interference altogether.
- Disadvantage: it excessively enhances the noise.

Signal power density spectrumS(f)AWGN channel with frequency transfer functionH(f)Zero Forcing filter1/H(f)

Received power spectrum

$$R(f) = S(f) + \frac{N_0}{H(f)H^*(f)}$$

Thus signal to noise ratio

$$\frac{S}{N} = \frac{E_b T_b}{N_0} \left(\int_{B_T} \frac{1}{|H(f)|^2} df \right)^{-1}$$

Equalizer Approaches

- Best equalization minimizes the signal-to-interferenceplus-noise, but this is not necessarily the best receiver design:
- Maximum likelihood (ML) detector Find the bit sequence that was most likely
- Minimize the Mean Square Error(MSE) caused by ISI and noise

LMS: Least mean square algorithm recursively adjusts tap weights