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Abstract. In some applications of electronic watermarks, the device
that detects whether content contains a watermark or not is in public
domain. Attackers can misuse such detector as an oracle that reveals up
to one bit of information about the watermark in each experiment. An
information-theoretical analysis of the information leakage is provided,
and a method is proposed to reduce the information leakage by orders
of magnitude.
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1 Introduction

It is an open problem whether reliable and secure public watermarks can exists.
Such public watermarks allow anyone to detect electronic watermarks, while the
security and robustness are not a�ected by this public knowledge. By secure we
mean that knowledge about how to detect a watermark does not reveal how the
watermark can be removed or altered. We call the watermarking scheme reliable
if it is robust to typical transmission and storage imperfections (such as lossy
compression, noise addition, format conversion, bit errors) and signal processing
artefacts (noise reduction, �ltering), whether intentional or not. Moreover, con-
tent that has not been watermarked may not trigger a detector, or at least this
probability should be negligibly small. Typical requirements for watermarking
methods are

1. The watermark should be secure. Erasing the watermark should be techni-
cally di�cult.

2. The watermarking scheme should be reliable.
3. An original image and its marked version should be perceptually indistin-

guishable. After commonly accepted processing, e.g. MPEG lossy compres-
sion, the accumulated artifacts should not be visible.

Public watermarks are desirable for copy management and embedded sig-
nalling of author's and publisher's data within the content. In innovative copy
protection schemes, as for instance intended for new generation (Digital Versa-
tile Disc) DVD systems, a consumer device performs a watermark detection as



part of its judgement whether the content is original, or a legal or illegal copy.
Watermarked content on discs that do not have the correct physical identi�ers of
the original publisher will not be played. For all systems known to the authors,
the watermark detection method, i.e., its algorithm and the "keys", have to be
kept secret to avoid that copyright pirates can remove the watermark. It is often
assumed that the watermark detector is therefore implemented as a tamperproof
box such that the attacker can not reverse-engineer critical parameters or prop-
erties of the detector from the implementation. An important class of proposed
detectors is covered in Section 2.

An attacker can nonetheless learn and erase the watermark by experimenting
with the content that he inputs to the detector [1]. Unless special precautions
are taken, the attacker gains one bit of information about the watermark in
every attempt. This implies that the attack is linear with the number of pixels
in the image. This is in sharp contrast with the common belief that an attacker
must do order O(exp(N)) experiments to �nd a secret watermark in an image
of N pixels. In Section 3 we describe the attack. An attacker is successful if he
can modify a marked image such that the detector responds that it does not see
a watermark, while the modi�cations to the image are invisible. We propose a
countermeasure that increases the work load for an attacker by a several orders
of magnitude in Sections 4-6.

2 Typical Watermarking Detector

Let us consider a rectangular image r of size N1 by N2 pixels. The coordinates of
the pixels are denoted by n 2 A = f(n1; n2) : 0 � n1 � N1�1; 0 � n2 � N2�1g.
The luminance of the pixel with coordinates n is denoted as r(n). We represent
the watermark as w or w(n), which takes on a value in each pixel n 2 A.
A watermark detector outputs D = 1 if it recognizes a watermark, otherwise
D = 0.

The most commonly used watermark detector bases this decision on the cor-
relation between the suspect image and (a possibly transformed version of) the
watermark [2{6]. Although many authors do not explicitly mention a correlator
as their detection method, many schemes published thus far are mathematically
equivalent to detection by correlation, or extensions of this basic concept. Such
detector, as for instance in Figure 1, extracts a decision variable y from the sus-
pect image q through a correlation operation Rw(q) with a locally stored copy
of the watermark w;

y = Rw(q) =
X
n2A

w(n)q(n):

Then, if y > ythr with ythr some threshold value, it decides that the watermark
is present and it outputs D = 1, otherwise D = 0.

We refer to [4] for an evaluation of how a decision threshold ythr relates to
the probability of a missed detection (the watermark is present, but the detector
thinks it is not) and the probability of a false alarm (no watermark is embedded,
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Fig. 1. Correlator detector

but the detector thinks one is). These probabilities measure the reliability of the
watermarking scheme.

The output of the detector D can be seen as a random variable depending
on y. In fact we have the Markov sequence

q ! y ! D;

where q, y = Rw(q), and D are interpreted as random variables. I.e., the dis-
tribution function of random variable D, conditioned on the entire past, can be
expressed exactly through conditioning only on the most recent random variable
y.

Note that here we do not explicitly describe how an original image is wa-
termarked in order to trigger a detector. In the standardization of watermarks
for copy protection, it has become clear that only the detection algorithm needs
to be prescribed, whereas the content owner can be given the freedom to use
proprietary solutions for embedding the watermark. Particularly because of on-
going developments in perceptual modelling, such solutions tend to di�er from
implementation to implementation and to improve over time [7]. The reader may
assume that the embedding method creates a new image q with q = r + � � w,
where � is an appropriate embedding depth and � is a pixelwise multiplication.
The attack described in this paper is considered to be successful if the attacker
manages to modify a watermark image in such a way that the detector will not
be triggered. This neither implies that he recovered the original image precisely
as it was before marking, nor that the new image is free of remnants from the
watermark. However, one can use the r.m.s. modi�cations to the marked image
as a �rst-order indication of the perceptual damage to the image.

In order to intuitively understand the concept of the attack and the counter-
measures, we now present a geometrical interpretation of the correlator detector.
This attack has been successfully executed against several more sophisticated
watermarking methods.

Pictures are interpreted as vectors in anN1N2 = N dimensional vector space,
see Figure 2. The vector space consists of three parts; S< = fb : Rw(b) < ythrg,
S> = fb : Rw(b) > ythrg, and S= = fb : Rw(b) = ythrg. For pictures in S< the
detector outputs 0. With probability close to one, a random unmarked image
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Fig. 2. Geometrical Interpretation. Image r, Watermark w, Marked Image q

r 2 S<. We will consider only those original images that do not raise a false alarm
in a detector, that is we do not address the small fraction of those original images
that by accident are within S>. For marked pictures, which are in S> the detector
outputs 1. On the separating surface S=, the watermark detector also outputs
D = 0. Area R contains all pictures which are perceptually indistinguishable
from r. According to requirement 3 we have that q 2 R.

AreaQ contains modi�cations of q caused by typical transmission and storage
imperfections and signal processing artefacts. According to requirement 3 such
pictures should be perceptually indistinguishable from r as well, thus Q � R.
The watermarking scheme should be reliable, see requirement 2, hence, Q � S>.
Summarizing, we have that r 2 R, and q 2 Q � R \ S>, and we assume that a
watermarking method exists that allows q to be created.

The attacker's task is to �nd a point in S<, preferably as close as possible
to r. In practice, he will be satis�ed with r̂ 2 S< close to q and he hopes that
r̂ 2 R. We conclude this section by noting that in the �gures the geometrical
shape of the areas are idealized.

3 The Attack

The attacker is assumed to have a marked image q (from which he attempts
to remove the watermark) and to have access to the input and output of a
watermark detector. This detector can either be in a tamperproof box, or it can
be a remote server algorithm on a network that allows users to submit random
images for watermarks detection.

In abstract terms, the attacker operates as follows [1]:



[Select random point in S<, near S=] He initially searches for a random point
q0 2 S< as close as practically possible to S=. At this point it does not matter
whether the resulting image resembles the original or not. The only criterion
is that some minor modi�cations to the test image cause the detector to
respond with D = 1 while other modi�cations result in D = 0. One method
is to gradually replace more and more pixels in the image by neutral grey.

[Find tangent el] He then estimates the tangent el to the surface S= by taking
a random vector tj and searches the values 
j for which ql + 
jtj changes
the decision of the detector. Typically, one only needs a single small positive
or negative value for 
j , e.g. 
j 2 f�1;+1g. A useful choice for tj is zero for
all pixels except for a single pixel nj . That is, ql + 
jtj slightly increases or
decreases the luminance of that pixel just enough to ensure to trigger the
detector (ql + 
jtj 2 S>). This provides the insight of whether w(nj) > 0
or < 0. In a more sophisticated version, one can also estimate the value of
w(nj).
This test is repeated for a complete set of independent vectors tj , j = 0,
1, : : :, N � 1. At the end the attacker has gained knowledge about w and,
hence, about the shape of the surface S= near ql. Using this knowledge he
estimates the tangent el to the surface S= near ql.

[Create a point ql+1 in S< near S=] Combining the knowledge on how sensi-
tive the detector is to a modi�cation of each pixel, the attacker estimates
a combination of pixel values that has the largest (expected) in
uence on
the detector decision variable. The attacker uses the original marked image
q (or ql) and subtracts �l � el resulting in a new point ql+1 in S< near S=,
such that the detector reports that no watermark is present. Parameter el
is the tangent vector constructed in the previous step. Parameter �l may be
found experimentally, such that �l may have the smallest perceptual e�ect
on the image. A sophisticated attacker also exploits a perceptual model that
makes the value of �l dependent on the pixel location. This is the �nal step
for watermarking schemes with a simple correlator. If the surface S= is not
a hyper plane, e.g., if the threshold value depends on the variance in the
image, or if the surface is a collection of parts of hyperplanes, the attacker
may iterate.

[Iterate] If the attacker is dissatis�ed with the perceptual damage to the image,
he may treat this image ql+1 again as a test image to estimate the local
sensitivities. That is, he repeats the procedure for l + 1 (�nd tangent el+1
and create a point ql+2 in S< on or very close to the separating surface S=)
until he �nds a point qn appropriately close to q.
If the surface S= in not a perfect plane, he may need to invoke more sophisti-
cated searching algorithms, possibly including simulated annealing. However,
for most correlator-based detection methods the attack only needs a single
round of the above iterative process. For intuitive understanding we analyse
the attack against a simple correlator/threshold detector with an idealised
perceptual model. In this case a single round of iteration is su�cient. For
ease of analysis we focus on the special case w(n) 2 f�k; kg where k > 0,
i.e. similar to proposals as in for instance in [2, 5].



4 Countermeasure

It appears possible to make the watermark detector substantially less vulnerable
to the attack by randomizing the transition point ythr of the detector. If the
transition area S= is not a perfect plane, but a fuzzy area with random decisions
by the detector if y � ythr, an attacker will get much less information from each
experiment performed in Step 2. If the randomization only occurs in a limited
range of the decision value, the e�ect on the reliability is small.

For instance, instead of using one threshold ythr, the detector uses two thresh-
olds y1 and y2 with y2 > y1. If y < y1, D = 0 and if y > y2, D = 1. In the range
y1 < y < y2, the detector chooses D = 1 with probability p(y), where p(y) is
smoothly increasing in y.

4.1 Reliability

For reliability reasons the detector must respond D = 0 with very high probabil-
ity for unmarked images and with D = 1 for marked images. Random responses
are acceptable only in a transition range: y1 is taken large enough such that the
probability for a random, unmarked image not to generateD = 0 is small enough
(probability of a false alarm). Similarly, y2 is taken small enough such that the
probability for a watermarked image not to generate D = 1 is small enough
(probability of a missed detection). To satisfy the reliability requirements, the
system designer should select the decision interval [y1; y2] small enough such that
the reliability of the detector stays within acceptable range. On the other hand,
the length of the transition interval [y1; y2] is taken large enough to ensure that
for small changes to the image (resulting in small changes to y), the gradient of
the decision probability p(y) is only noticeable to an attacker after taking many
samples and statistically processing these. It has been shown that the decision
variable is a Gaussian random variable. Its mean value corresponds to the energy
in the watermark, de�ned as Ew =

P
n2A w(n)

2. The variance is determined by

the variance of pixel luminance values, thus �2 = Er2 � E2r and other param-
eters. Erroneous detections occur with a probability that is determined by the
energy in the watermark, the threshold setting and the variance of the random
cross correlation between the original image and the reference watermark. If, in
a detector without a countermeasure, a threshold of ythr would be chosen, one
could include the countermeasure by taking y1 = ythr and y2 = �ythr. This
would require the watermark to be embedded with a slight increase in energy,
determined by � . This increase can be limited to a few dB, however, an detailed
evaluation is outside the scope of this paper.

4.2 Sophisticating the attack

Despite the random responses, an attacker can nonetheless extract information
if he manages to estimate p(q0) and p(q0 + 
jtj). He could estimate these prob-
abilities by repeated trials. Particularly, if p(y) has a pronounced discontinuity



at yd, he could launch the attack near yd. If for instance the detector would 
ip
an unbiased coin when y1 < y < y2, the attacker launches the attack either at
y � y1 or y � y2. In a few attempts he will learn whether the probability is 0,
0.5 or 1 for each q0 + 
jtj .

There appears to be an optimum shape for p(y) which minimizes the leakage
of information, independent of the value of Rw(q0) at which the attack is exe-
cuted. In the coming sections we will construct, study, and analyse this optimal
shape.
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Fig. 3. Improved detector using countermeasure

Figure 3 gives an example of a possible implementation. For y1 < y < y2, the
behavior is determined by the cryptographic Hash value generator, the Random
Number generator and the Function. We notice that the implementation of Fig-
ure 3 results in a deterministic machine. That is if a �xed image q is input in
the detector then either it always detects the watermark or it never detects the
watermark. This avoids that an attacker estimates p(y) by inputting the same
image q in the detector over and over.

To the attacker not aware of the internal behaviour of the hash and random
function generator,

Pr(D(q) = 1jRw(q) = y) = p(y):

Let us consider an attacker eager to �nd p(y), who therefore manages to �nd
small modi�cations q+� to the image q, where y = Rw(q) = Rw(q+�) (Rw(�) =
0 if the detector is a linear correlator). The output of the Random Number
generator for these modi�cations q+ � di�er in an unpredictable manner. Hence,
for a fraction p(y) of all small modi�cations q + � we have D(q + �) = 1. Thus
by interpreting q as a �xed picture and � as a uniformly distributed random
variable representing small modi�cations with Rw(q) = Rw(q + �),

Pr(D(q + �) = 1jR(q) = y) = p(y): (1)



5 Probabilistic Behavior

As we argued before, preferably p(y) is a smooth function. The attacker can
still estimate the sensitivity of p(y) to his intentional modi�cations 
jtj of the
image. Hence he will learn the relation between y and 
jtj . We will determine
the optimum relation between p(y) and y to protect against this attack.

Assume that the pirate has created a test image ql in step 3 or initially in
step 1 of the attack. In the following analysis we focus on step 2 (estimating the
tangent). More speci�cally we investigate how the attacker can �nd p(ql + 
jtj)
by making second-oder small modi�cations �i

1.
Let Rw(ql) = y. For small modi�cations ql + �; j�j << j
jtj j to the original

image ql approximation
y = R(ql) � R(ql + �)

holds. Thus the detector returns D = 1 with probability p(y) for these small
modi�cations, see (1). Henceforward, through many experiments with di�erent
�i's the attacker is able to estimate the value of p(y) = p(Rw(ql)).

Let ql;j;i = ql + 
jtj + �i such that

Rw(ql;j;i) � Rw(ql + 
jtj):

For ease of notation we write qi instead of ql;j;i. Image 
jtj is a bias, which we
interpret as a test image which is non-zero only in one pixel nj . For ease of
notation we write t instead of 
jtj and n instead of nj . Let t(n) = � > 0 and
� = �k. Then the e�ect �y that t has on the decision variable is

�y = Rw(t) = � � w(n) 2 f��k;+�kg = f��;+�g:

Since Rw is (at least in a �rst order approximation) a linear function we have
that

Rw(qi) � Rw(ql + t) = Rw(ql) +Rw(t) = y +�y

and if p(y) is a smooth (di�erentiable) function

p(Rw(qi)) � p(y +�y) � p(y) +�y � p0(y);

where p0(y) denotes the derivative of function p evaluated in y. Thus the detector
returns output Di = 1 with probability p(y) +�y � p0(y) for image qi, that is

Pr(Di = 1jw(n) = +k) � p(y) + � � p0(y);

P r(Di = 1jw(n) = �k) � p(y)� � � p0(y): (2)

Henceforward, through many experiments with di�erent qi's the attacker is able
to estimate the value of p(y) + �y � p0(y). If this value is more than p(y) the
attacker concludes that �y = +� and w(n) = +k. If it is less than p(y) the
attacker concludes that �y = �� and w(n) = �k.

1 Here ql is the zero-order attempt, 
jtj 's describe �rst-order sensitivity measurements,
and �i's describes second-order randomizations to obtain statistical averages.



The idea is that the attacker gathers information about the polarity of the
watermark in the pixel w(n) through the series of test images qi. This results
in a sequence of outputs of the detector D1; D2; : : : ; Di; : : :. In the remainder
we denote D1; : : : ; Di by Di. The average amount of bits needed to describe
a realization of Di is measured by the uncertainty about Di, denoted by the
entropy function H(Di). The average amount of bits needed to describe Di

given the knowledge of w(n) is measured by the conditional uncertainty about
Di given w(n), denoted by the conditional entropy function H(Dijw(n)). The
mutual information I(Di;w(n)) = H(Di)�H(Dijw(n)) between Di and w(n)
measures the amount of information Di and w(n) have in common. Hence,
I(Di;w(n)) measures the amount of information that the observation Di reveals
about the unknown w(n). We notice that w(n) takes on values �k and +k with
equal probability, hence H(w(n)) = 1 bit. The entropy function h is de�ned as
h(x) = �x logx�(1�x) log(1�x) where the logarithm is of base 2. We notice that
h0(x) = log((1�x)=x) and that the second derivative h(2)(x) = �1=(x(1�x) ln 2).
For a thorough treatment in information theory we refer to Cover and Thomas
[8].

To defend the con�dentiality of the watermark, the system designer of the
copy protection scheme keeps the information that Di reveals about the water-
mark as small as possible. He designs function p such that I(Di;w(n)) is small
enough. Let us analyse this mutual information. Let us consider the special case
i = 1. From approximations (2) and the de�nition of entropy we infer that

H(D1jw(n) = +k) � h(p(y) + �p0(y));

H(D1jw(n) = �k) � h(p(y)� �p0(y));

H(D1jw(n)) � (h(p(y) + �p0(y)) + h(p(y)� �p0(y)))=2;

and Pr(D1 = 1) = ((p(y) + �p0(y)) + (p(y)� �p0(y)))=2 = p(y), hence

H(D1) = h(p(y)):

We conclude that

I(D1;w(n)) = H(D1)�H(D1jw(n))

� h(p(y))�
1

2
[h(p(y) + �p0(y)) + h(p(y)� �p0(y))] (3)

� �
(�p0(y))2

2
h(2)(p(y))

=
(�p0(y))2

2

1

p(y)(1� p(y)) ln 2
: (4)

Let us consider the more general case i � 1. Let

Fs(x) = (p(y) + x)s(1� p(y)� x)i�s;

B(x) = �
X
0�s�i

�
i

s

�
Fs(x) log

�
1 +

Fs(�x)

Fs(x)

�
;



and let its Taylor sequence be

B(x) =
X
j�0

B(j)(0)
xj

j!
:

Then the following theorem holds. For its proof we refer to the appendix.

Theorem 1. Assuming that equalities hold in (2) we have

I(Di;w(n)) =
X
j�1

B(2j)(0)
(�p0(y))2j

(2j)!
;

where

B(2)(0) =
i

p(y)(1� p(y)) ln 2
:

Hence,

I(Di;w(n)) = i � I(D1;w(n)) +
X
j�2

B(2j)(0)
(�p0(y))j

(2j)!
:

The system designer of the copy protection scheme wants to design p(y) such
that I(Di;w(n)) is as small as possible given that p(y) = 0 for y � y1 and
p(y) = 1 for y � y2. We notice that the size of interval [y1; y2] is related to
the reliability of the detector, the smaller the interval the better the reliability.
So, in practise the system designer chooses �rstly the size of this interval such
that the reliability of the detector will be in a reasonable range. Secondly, the
system designer constructs an optimal function p(y) (optimal in the sense that
I(Di;w(n)) is as small as possible).

We notice that for a �xed function p(:), I(Di;w(n)) solely depends on the
value y. Therefore we de�ne

Ii(y) = I(Di;w(n))

and we infer from Theorem 1 and (4) that a �rst order approximation gives

Ii(y) �
2i�2

ln 2

�
(p0(y))2

1� (2p(y)� 1)2

�
:

By substituting

p(y) =
1

2
�

1

2
cos(r(y)) (5)

with r(y) = 0 for y � y1 and r(y) = � for y � y2 we obtain

Ii(y) �
2i�2

ln 2

(r0(y))2

4
:

Hence,

jr0(y)j �

p
2 ln 2Ii(y)=i

�
; (6)



where Ii(y)=i is the information leakage expressed in watermark bits per exper-
iment. The system designer wants to have

sup
y
Ii(y)=i

as small as possible. The requirement that supy Ii(y)=i is as small as possible is
equivalent to the requirement that supy jr

0(y)j is as small as possible, see (6).
We conclude that r(y) linearly increases in the interval [y1; y2]. Thus

r(y) = �
y � y1
y2 � y1

(7)

and �=(y2 � y1) � (
p
2 ln 2Ii(y)=i)=�, that is

Ii(y)=i �
�2

2 ln 2

�
�

y2 � y1

�2

(8)

is the information leakage expressed in watermark bits per experiment. We have
constructed the optimal shape of p(y) and we conclude that the information
leakage, expressed in watermark bits per experiment, decreases quadratically in
the size of the decision interval. We notice that the reliability of the watermarking
scheme gets worse (higher probabilities of missed detection and false alarm) if
the size of the decision interval increases.

We have analysed a �rst order approximation of an optimal shape for p(y).
This means that (8) gives a �rst order approximation of the information leakage.
A better approximation (actually an upper bound) is given by the next theorem.
Its proof is presented in the appendix.

Theorem 2. Assuming that equalities hold in (2) and that p(y) is de�ned by
equations (5) and (7) we have that

I(Di;w(n)) � i � I

with

I = 1� h

�
1

2
�

��

2(y2 � y1)

�
�

�2

2 ln 2

�
�

y2 � y1

�2

� I(D1;w(n))

if �=(y2�y1) < 1=�, and I = 1 if �=(y2�y1) � 1=�. Here y2�y1 is the transition
width of the decision interval and �y 2 f+�;��g is the e�ect that modifying
one pixel has on the decision variable. Parameter I expresses the information
leakage in watermark bits per experiment. The reliability of the watermarking
scheme gets worse if the size of the decision interval increases.

6 Discussion

Example 1. Let us consider a digitized representation of a television frame in
the NTSC standard, having N = N1�N2 = 480 by 720 pixels, with w(n) = �1.



Then Rw(w) = 345600. A useful choice of detection thresholds can be y1 =
115200 and y2 = 230400. If the luminance is quantized into 8 bits (0; : : : ; 255)
one pixel test t can in
uence the decision variable y by at most � = 255 but a
more realistic value is � � 100 relative to mid grey. In such case, I = 5:4 � 10�6

bits per test. So recovering the full watermark is 186000 times more di�cult
than without the randomized decision threshold.

In an attempt to increase � the attacker may use a di�erent base ft0; t1; : : :,
tN�1g (in the previous example and in Section 5 tj(nj) = � and tj(nm) = 0 for
m 6= j). The e�ect of tj on the decision variable is Rw(tj) =

P
n2A w(n)tj(n).

Notice that w = fw(n)gn2A is a random variable to the attacker and that the
expected e�ect of tj on the decision variable is E[Rw(tj)] = 0. For a spectrally
white watermark, i.e., if E[w(n)w(n + �)] = 0 for � 6= 0, we �nd the second
moment

E[Rw(tj)
2] =

X
n2A

X
n+�2A

E[w(n)w(n +�)]tj(n)tj(n+�)

= k2
X
n2A

tj(n)
2 = k2Etj ; (9)

where Etj =
P
n2A tj(n)

2 is the energy in the test image tj . Experiments
with test image tj reveal information about the value of Rw(tj) which gives
us a linear relationship between the values of w(n), n 2 A. We de�ne the
expected information leakage Ii(y) in i experiments expressed in watermark
bits by Ii(y) = I(Di;w) � i � I(D1;w) = i � (H(D1) � H(D1jw)) (notice that
I(Di;w) = I(Di;w(nj)) if tj is non-zero only in one pixel nj). See (2),

p(Rw(qi)) � p(y) +Rw(tj)p
0(y): (10)

Hence, H(D1) = h(E[p(y) +Rw(tj)p
0(y)]) = h(p(y)) and

H(D1jw) =
X
ŵ

Pr(w = ŵ)H(D1jw = ŵ) =
X
ŵ

Pr(w = ŵ)h(p(y) +Rw(tj)p
0(y))

= E[h(p(y) +Rw(tj)p
0(y))]

= (E[h(p(y) +Rw(tj)p
0(y))] + E[h(p(y)�Rw(tj)p

0(y))])=2:

We obtain that the information leakage expressed in watermark bits per exper-
iment equals

Ii(y)=i � E[h(p(y))� (h(p(y) +Rw(tj)p
0(y)) + h(p(y)�Rw(tj)p

0(y)))=2]

� E[�2Rw(tj)
2=(2 ln 2(y2 � y1)

2)]; see (4);

=
�2

2 ln 2

(
k
p
Etj

y2 � y1

)2

; see (9):

We have generalized (8) towards this new setting. Notice that for large Etj

approximation (10), and hence the generalized formula, is not accurate anymore.



We conclude that for large Etj the attacker gains substantial information.
However, large Etj is not suitable for watermark detection methods where S=
is not a perfect hyperplane. Then ql + tj would be in
uenced too much by tj
because of its large energy Etj .

7 Concluding remarks

Electronic watermarks are a useful technical mechanism to protect Intellectual
Property Rights. The use of watermarks in copy control for consumer electronic
products, however, is not yet fully understood. We have investigated the sensi-
tivity attack. The proposed countermeasure increases the workload by orders of
magnitude, but the workload remains linear in the number of pixels.

In [1] a sensitivity attack is described that shows that if a watermark de-
tection algorithm could be placed in a perfectly tamperproof box, this does
not necessarily imply that the attacker cannot �nd a method to remove the
watermark. This result questions the possibility to build perfect \public" water-
marking schemes in which that attacker knows how to detect a watermark, but
despite this knowledge he cannot remove or alter the watermark. A necessary
condition for such system to be secure is that it should withstand the attack
described here. Knowledge of the detection algorithm implies that the attacker
can use the detector as an oracle to gain information about the watermark. As
the attack proves, this is often su�cient to remove the watermark pixel by pixel.
If the attack, or a more sophisticated elaboration of it, is successful against a
black-box watermark detector, it would certainly be able to remove a water-
mark for which the attacker has the full details of the detection algorithm. All
watermarking methods known to the authors are of the secret-key type, i.e., the
watermark detector contains secret information, which could be exploited by an
attacker to remove the watermark.

A Proofs

A.1 Proof of Theorem 1

Assuming that equalities hold in (2) we will prove

I(Di;w(n)) =
X
j�1

B(2j)(0)
(�p0(y))j

(2j)!
:

For realizations di = (d1; : : : ; di) with s(di) = jfl : dl = 1gj we have that

Pr(Di = dijw(n) = +k) = Fs(di)(+�p
0(y));

P r(Di = dijw(n) = �k) = Fs(di)(��p
0(y));

P r(Di = di) = (Fs(di)(+�p
0(y)) + Fs(di)(��p

0(y)))=2:



By de�nition of entropy and conditional entropy

H(Di) = �
X
di

Pr(Di = di) logPr(Di = di);

H(Dijw(n)) = (H(Dijw(n) = +k) +H(Dijw(n) = �k)=2

= �
1

2

X
di

Pr(Di = dijw(n) = +k) logPr(Di = dijw(n) = +k) +

�
1

2

X
di

Pr(Di = dijw(n) = �k) logPr(Di = dijw(n) = �k):

By combining all equations and noticing that B(0) = �1 we obtain

I(Di;w(n)) = �
1

2

X
di

Fs(di)(+�p
0(y)) log

1

2

�
1 +

Fs(di)(��p
0(y))

Fs(di)(+�p0(y))

�
+

�
1

2

X
di

Fs(di)(��p
0(y)) log

1

2

�
1 +

Fs(di)(+�p
0(y))

Fs(di)(��p0(y))

�

= �[B(0)�
1

2
fB(+�p0(y)) +B(��p0(y))g]

=
X
j�1

B(2j)(0)
(�p0(y))2j

(2j)!
:

Straightforward, but lengthy, computations give the desired expression forB(2)(0).

A.2 Proof of Theorem 2

We notice that Dl  w(n) ! Dl�1 is a Markov sequence since Dl and Dl�1

only depend on each other because of their relation towards w(n). Therefore we
may conclude that

I(Dl;w(n)jD
l�1) = H(DljD

l�1)�H(Dljw(n)D
l�1)

= H(DljD
l�1)�H(Dljw(n))

� H(Dl)�H(Dljw(n)) = I(Dl;w(n)):

Hence, by using (3)

I(Di;w(n)) =
iX

l=1

I(Dl;w(n)jD
l�1) �

iX
l=1

I(Dl;w(n)) = ig(p(y); �p0(y));

where for 0 � z � x � 1� z � 1

g(x; z) = h(x)�
1

2
[h(x+ z) + h(x� z)]:



Let us do some function research for g(x; z) seen as function of x in the by
us considered interval [z; 1� z]. We notice that

d

dx
g(x; z) = h0(x) �

1

2
[h0(x+ z) + h0(x� z)];

thus d
dxg(x; z)jx=1=2 = 0. Further d

dxg(x; z)jx=z = h0(z) � h0(2z)=2 = log((1 �

z)=z)�log((1�2z)=2z) = log((2�2z)=(1�2z)) > 0 and similarly d
dxg(x; z)jx=1�z <

0. For function d
dxg(x; z) we compute

ln 2
d2

dx2
g(x; z) =

�1

x(1� x)
+

1

2

�
1

(x+ z)(1� x� z)
+

1

(x� z)(1� x+ z)

�

=
�1

x(1� x)
+

x(1� x) + z2

(x2 � z2)((1� x)2 � z2)
:

This appears to be � 0 i� 1=2�
p
z2 � 3=4 � x � 1=2+

p
z2 � 3=4. We conclude

that d
dxg(x; z) > 0 if x < 1=2, d

dxg(x; z) = 0 if x = 1=2, and d
dxg(x; z) > 0 if

x > 1=2. Hence, we have that g(x; z) is maximal for x = 1=2.
We notice that

d

dz
g(1=2; z) = log

1=2 + z

1=2� z
> 0:

Hence, g(1=2; z) is increasing in z. We have that p((y2 � y1)=2) = 1=2 and
�p0(y) � �p0((y2 � y1)=2) = ��=(2(y2 � y1)). Hence, g(p(y); �p

0(y)) is maximal
for y = (y2 � y1)=2 and we have that

g(p(y); �p0(y)) � 1� h(1=2� ��=(2(y2 � y1))):
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