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I Background

New multi-media networks and services facilitate the distribution of content,
but at the same time make copying and copyright piracy simple. Here we see a
clear need to embed copyright data, such as the ownership or the identity of the
authorized user in an indelible way. Particularly if watermarking is part of an
active copy control concept, typical requirements include:

1. Erasing or altering the watermark should be technically di�cult.
2. The watermarking scheme should be robust to typical transmission and stor-

age imperfections (such as lossy compression, noise addition, format conver-
sion, bit errors) and signal processing artefacts (noise reduction, �ltering),
whether intentional or not.



3. It should be robust against typical attacks, e.g. those described in [?].

4. False alarms, i.e., positive responses for content that does not contain a
watermark should not occur more often than electronic or mechanical prod-
uct failures. Consumer electronics devices should not fail to work because a
watermark detector was erroneously triggered.

5. The watermark should be unobstructive, and not be annoying to bona-�de
users.

The "low false alarm" requirement appears too stringent to determine error
rates experimentally. This has been a motivation to develop a mathematical
model for the reliability of watermark detectors.

The organization of the paper is as follows. Section I provides an introduction
to the problem of watermarking, its potentials and limitations. Section II intro-
duces our model of the image and the watermark. It extends the idea proposed
in [1] to regard the original content as interference during the detection of weak
wanted signal (namely the watermark). However, we consider known properties
on the image and addresses randomness in the watermark generation. Section
III discusses the use of a correlator detector, as is now common practice in many
watermark systems. The relaibility of such generic detector is derived, and three
special cases are dealt with. The model is veri�ed with experiments in Section
IV. Section V concludes this paper.

The aim of this paper is to contribute to the modelling of the reliablility of
watermark detectors, which involves the development of a mathematical frame-
work and veri�cation of critical assumptions. A few counterintuitive results are
found and discussed.

II Formulation of Model

We approach the problem of watermark detection by assuming a stationary pro-
cess p as a model for our set of images. We assume certain relevant spatial
properties of the image to be known. Watermarking is done by modifying the
image such that a detector is triggered. Given a reference copy of the watermark
w(n) the detector decides whether an image is watermarked or not by comput-
ing a decision variable y and comparing y to a threshold ythr. We will derive
expressions for the statistical properties of y and the reliability of detection.

II.1 Image Model

We address an image of size N = N1N2 pixels. The intensity level of the pixel
with coordinates n = (n1; n2), (0 � n1 � N1 � 1; 0 � n2 � N2 � 1) is denoted
as p(n). We denote 0 = (0; 0), e1 = (1; 0) and e2 = (0; 1), so n = n1e1 + n2e2.
The set of all pixel coordinates is denoted as AN , where

A = fn : 0 � n1 � N1 � 1; 0 � n2 � N2 � 1g:



In color pictures, p(n) is a YUV or RGB vector, but for sake of simplicity we
restrict our discussion to gray scale images, in which p(n) takes on real or integer
values in a certain interval.

The k-th sample moment of the gray level of each pixel is denoted as �k =
A[pk(n)], where A is a spatial averaging operator. In particular, �1 represents
the average value or expected "DC-component" in an image and �2 = A[p2] =
1
=
N
P

(n)2AN
p(n) represents the average power in a pixel and Ep = N�2 is the

average total energy in an image. The variance is �2 = E[p(n)��1]
2 = �2� �21.

The intensity levels of pixels ni and nj are correlated, with

E[p(ni)p(nj)] = �p;p(ni � nj):

The correlation only depends on the di�erence vector � = (�1; �2) = (ni;1 �
nj;1; ni;2�nj;2), as we assume that the image has homogeneous statistical prop-
erties (wide-sense spatial stationarity). If the image size is large enough (N1 �
0; N2 � 0) and if the process p(n) is assumed to be ergodic we are allowed to
approximate the statistical autocorrelation �p;p(�) by a spatial autocorrelation
Rp;p(�)

�p;p(�) � Rp;p(�) =
1

N

X
n2A

p(n)p(n+�):

In order to make calculations for our examples tractable, we simplify the image
model assuming the �rst-order separable autocorrelation function (acf) [?]

�p;p(�1; �2) = �21 + �2�j�1j+j�2j

where � can be interpreted as a measure of the correlation between adjacent
pixels in the image.

Experiments, e.g. in [?] reveal that typically � � 0:9:::0:99. We denote ~p(n)
as the non-DC components of the image, that is p(n) = �1 + ~p(n), so �~p;~p =
�2�j�1j+j�2j.

Some of the above assumptions seem a crude approximation of the typical
properties of images. From experiments such as those to be reported in section V,
it appeared that reliability estimates based on this crude model can be reasonably
accurate for the purpose of this evaluation. These assumptions, however, exclude
certain images, such as binary images or computer-generated images with a
limited number of colors.

II.2 Watermark Model

To detect a watermark in a suspect image, some proposed methods only use the
suspect image and reference data on the watermark, while other methods also
require the availability and use of the original image. We assume here that p(n)
is not available at the detector. Watermarked images have similar properties
as unmarked images, except that perceptially invisible modi�cations have been
made. The watermark is represented by w(n) which takes on real values in all



pixels n 2 A. This watermark w(n) is added to the original image. This results
in the marked image q(n) = p(n) + 
(n)w(n), where we intentionally do not
specify the embedding depth 
(n). In the analysis we assume 
(n) � 1forall
n 2 A.

This model implicitly assumes that no spatial transformation of the image
(resizing, cropping, rotation, etc.) is conducted. We aim at detecting whether a
particular watermark is present or not, based on knowledge of w(n). A water-
mark detector has to operate on the observation q(n), while having knowledge
on the a priori statistical behaviour of p(n).

For two watermarks watermark w1 and w2 the (deterministic) spatial inner-
product is

�w1;w2(�) =
1

N

X
n2A

w1(n)w2(n+�);

where we assume for simplicity that n+� wraps around when it formally falls
outside of the set A. If we consider an ensemble of many watermarks generated
by a particular watermark generation algorithm, the statistical correlation

Rw1;w2(�) = E[w1(n)w2(n+�)]

The total energy in watermark equals Ew =
P

n2A w
2(n) = N�w;w(0).

II.3 DC components

The DC content of the watermark is D0 =
1
N

P
n2A w(n).

Some watermarks are generated by randomly generating a +k or �k pixel
value for w(n), independently for each pixel n. Averaged over a large collec-
tion of such watermarks, the mean DC component Ew(n) is zero, however each
individual watermark not necessarily has a zero DC component. We call a wa-

termark generation process "statistically DC-free" or "DC-free in the mean" i�
E
�P

n2A w(n) = 0
�
. This is a necessary, but not a su�cient condition for all

individual watermarks to be DC free. An individual watermark is DC-free i�
D0 = 0.

For an arbitrary value of D0,

N2D2
0 =

P
n2A

P
k2A w(n)w(k) = Ew +

P
n2A

P
k2A;k6=n w(n)w(k)

= Ew +
P
�6=0

P
n2A w(n)w(n +�) = Ew +N

P
�6=0 �w;w(�)

(1)

II.4 Watermark Spectrum

This has consequences for DC-free and spectrally white watermark, which have
an correlation function that is a �-function. For a watermark with D0, one can
consider �w;w(�1) = �w;w(�2) = � for �1;�2 6= 0, where � is some con-
stant (j�j << Ew=N). It follows that � = (N2D2

0 � Ew)=(N(N � 1)). In par-
ticular, we see that for a DC-free watermark (D0 = 0), the values of w(ni) and



w(nj);ni 6= nj cannot be statistically uncorrelated (� < 0). ? This is also seen us-
ing a statistical argument regarding the observation that some pixel n0 has some
non-zero value w(n0) = k0 requires that the N�1 other pixels in the image must
compensate for this through

P
ni2Ann0

w(ni) = D0 � k0. Using the spatial ran-

domness that �w;w(�1) = �w;w(�2) for �1;�2 6= 0, we �nd E[w(ni)jw(n0) =
k0] = (D0 � k0)=(N � 1), and using �w;w(�) = E[E[w(ni)w(ni +�)j[w(ni)]],
we get

Rw;w(�) =

�
Ew
N

if � = 0
�1
N�1

Ew
N

if � 6= 0
:

We will call a watermark generation process "white and DC-free" if its auto-
correlation function is as described above. Its spatial spectrum components are

at (except at DC).

�w;w(�) =

(
Ew=N if � = 0
N2D2

0�Ew
N(N�1)

if � 6= 0

>>> D0

We will call a watermark \white and Dc-free" if �w;w = NEw and

A "purely white" watermark requires that the correlation equals exactly zero
outside � = 0. We have seen that purely white marks cannot be absolutely DC
free, but D0 =

>>> NB white a statistical property of the generation process, not of the
watermark

As an other example, we will treat the case that the watermark has a low-
pass spatial spectrum. This method has been advocated by for instance by Cox
et al. [?]. In such situation, a potential attacker can not easily remove the water-
mark by low-pass �ltering. Moreover, JPEG compression typically removes or
distorts high-frequency components. A low-pass a watermark can be generated
by spatially �ltering a spatially white watermark. Perceptually this appears as a
smoothing. A �rst-order two dimensional IIR spatial smoothing �lter computes

ŵ2(n) = (1� �2)2
�
w1(n) + �w2(n� e1) + �w2(n+ e2)� �2w2(n� e2 � e2)

�
It can be shown that in case of a statistically DC-free watermarkw1, a �rst-order
�lter generates a new watermark w2 with correlation function

�w2;w2 =
Ew

N
�j�j

Another method of generating a spatially shaped watermark is to use a random
generator which gives a correlated output for neighboring pixels.

? A similar small negative correlation outside the origin (� 6= 0) is often ascribed to a

peculiarity of maximum-length pseudo-random sequences, as generated by a Linear

Feedback Shift Registers (LFSR). However, the above argument reveals that it is

fundamental to the requirement of the DC value.
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Fig. 1. Watermark Embedder and Correlation Detector

III Correlator detector

Correlator detectors are interesting to study, for several reasons. They are a
mathematical generalization of the simple scheme in which watermarks with
w 2 f�1; 0;+1g. Let's denote A� = fn : w(n) = �1g and A+ = fn : w(n) =
+1g. Watermarks are detected by computing the sum of all pixel values in which
the watermark is negative, i.e., s� =

P
n2A

�

q(n) and the sum of all pixel values

in which the watermark is positive, i.e., s+ =
P

n2A+
q(n). Then, y = s+ � s�

is used as a decision variable, e.g. [?][?]. From our more general results to follow
it can be concluded that

{ its performance highly depends on whether the probability that ni 2 A�

statistically depends on whether nj 2 A� for some pair of di�ering pixel
locations ni 6= nj. High correlation between pixels in A� (and those in A+)
substantially reduces reliability.

{ If the number of pixels in sets A� and A+ are generated as binomial random
variables such that the expected value of the number of elements in both sets
is identical, this is signi�cantly worse than when the number of elements is
always precisely the same. This is in contrast to our intuition that if pixels are
put in A� and A+ with probability 1/2, the statistical e�ect of a di�ering
number of elements in each class becomes negligibly small for increasing
image sizes. Our results will show that this is not the case.

Another reason to address correlators is that are these are known to be
the optimum detector for particular situations often encountered in radio com-
munication, namely the Linear Time-Invariant (LTI), frequency non-dispersive,
Additive Gaussian Noise (AWGN) channel, when the receiver has full knowledge
about the alphabet of waveforms used to transmit a message.

In a correlator detector, a decision variable y is extracted from the suspect
image q(n) according to correlation with a locally stored copy of the watermark
ŵ(n) typically with ŵ(n) = w(n), so y = Rw;q(0), with

Rŵ;q(�) =
1

N

X
n2A

ŵ(n)q(n+�)

Figure 2 illustrates this correlation detector. The model covers all detectors in
which the decision variable is a linear combination of pixel luminance values in
the image. Hence, it is a generalization of many detectors proposed previously.
It covers a broader class of watermarks then the binary (w(n) 2 f�k; kg) or
ternary (w(n) 2 f�k; 0; kg) watermarks. In particular, it also includes methods
in which watermark data is added to DCT coe�cients. For our analysis, we



separate y into a deterministic contribution yw from the watermark,

yw =
1

N

X
n2A

ŵ(n)w(n) = Rw;w(0) =
Ew

N

plus �ltered noise from the image yp

yp =
1

N

X
n2A

ŵ(n)p(n)

Regarding yp, the mean value is found as the product of the DC component in
the watermark and the image, with

Eyp =
1

N
E
X
n2A

ŵ(n)p(n) =
Ep(n)

N

X
n2A

ŵ(n) = �1D̂0

This result appears to be irrespective of the correlation in pixels. To �nd the
second moment, we compute

Ep[y
2
p] = Ep

"
1

N

X
n2A

ŵ(n)p(n)

#2
= (2)

1

N2
Ep

2
4X
ni2A

X
nj2A

ŵ(ni)p(ni)ŵ(nj)p(nj)

3
5

Here, Ep denotes an expectation over all images. In the above expression it is
tempting to assume that cross terms with ni 6= nj all become zero or negligibly
small for su�ciently large images. However in the following sections we will show
that for correlated pixels (� > 0) and spectrally non-white watermarks, non-zero
cross terms substantially a�ect the results, even if D0 = 0.

Because of the Central Limit Theorem, yp has a Gaussian distribution if N is
su�ciently large and if the contributions in the sums are su�ciently independent.
The Gaussian behaviour will be veri�ed in section V. If we apply a threshold
ythr to decide that the watermark is present if y > ythr, the probability of a
missed detection (the watermark is present in q(n), but the detector thinks it is
not; false negative) is

Pmd =
1

2
erfc

yw � ythr +Eypp
2�yp

where �yp is the standard deviation of yp. Since yw equals Ew=N ,

Pmd =
1

2
erfc

Ew + �1ND̂0 �N1N2ythrp
2Ew�



The presence of D0 and �1 in this expression suggest that either these DC-terms
must be appropriately considered in selecting ythr or that the suspect image q(n)
must be preprocessed to remove the DC-term.

On the other hand, given that no watermark is embedded, a false alarm

occurs with probability

Pfa =
1

2
erfc

ythr � Eypp
2�yp

III.1 Example 1: White and DC-free watermark

The white and DC-free watermark reasonably models most of the early proposals
for increasing and decreasing the pixel luminance according to a pseudo random
process. Using p(n) = �1 + ~p(n), one can write

E[y2p] = �21D
2
0 +

1
N2

P
n2A

P
�:n+�2A ŵ(n)ŵ(n+�)E [~p(n)~p(n+�)]

For a DC-free watermark, the �rst term is zero. In the forthcoming evaluation,
the image size n is considered to be large enough and � is assumed to be suf-
�ciently smaller than unity to justify the ignorance of boundary e�ects. To be
more precise, we consider �w;w(�)R~p;~p(�) to vanish rapidly enough with in-
creasing � to allow the following approximation: we consider the summings
over � to cover the entire plane R2 even though the size of the image is �nite
and n+�. This allows us to write

�2yp = Ey2p =
1

N

X
�2R2

�w;w(�)R~p;~p(�)

We assume �~p;~p � R~p;~p.
For a binary watermark with embedding depth k, thus with w(n) 2 f�k;+kg,

this gives

Ey2p =
k2�2

N
�
X
�6=0

k2

N(N � 1)
[�2�j�1j+j�2j]

We get

Ey2p =
k2�2

N � 1
� k2�2

N(N � 1)

�
1 + �

1� �

�2
We see that the e�ect of pixel correlations is signi�cant only if � is very close
to unity (little luminance changes) in a small-size image. If the image is large

enough, that is, if N >>
h
1+�
1��

i2
, we may approximate

Ey2p �
k2�2

N

In practical situations, this appears a reasonable approximation. Inserting value
of the standard deviation �yp , the error probability becomes

Pfa =
1

2
erfc

Nythr � �1ND̂0p
2Ew�



In Figure 3, we consider a DC-free watermark and ythr =
Ew
2N

which provides
Pfa = Pmd. In practice one would presumably like to improve Pfa at the cost of
Pmd, but this corresponds to a horizontal shift of the curve.

We plot

Pfa = Pmd =
1

2
erfc

r
Ew

8�2

versus the watermark to image noise ratioEw=�
2, expressed in dB (10 log10

�
Ew=�

2
�
).

We have chosen this de�nition as it best matches common practice in statistical
communication to use Eb=N0 where Eb is the average energy per bit, and N0 is
the spectral power density of the noise. Note that Ew=�

2 typically is much larger
that unity for reliable detection, but this does not imply that the watermark
w(ni) in a particular pixel exceeds the luminance variations of the image. Simi-
lar to spread spectrum radio where Eb=N0 >> 1 despite the fact that spectrally
spoken the signal power is below the broadband noise, it is less relevant over how
many pixels the watermark energy is spread as long as the total energy Ew and
the image properties (� in particular) are �xed. However, examples 3 will show
that if the watermark energy is not embedded by a spectrally white watermark,
as assumed here, the results are di�erent and do depend on the "waveform"
used. This is in contrast to spread spectrum radio over AWGN channels.

III.2 Example 2: Non-DC free watermarks

A popular method to generate a watermark is to independently randomly choose
pixel values w(n) 2 f�k;+kg, which then may or may not be �ltered by a two-
dimensional �rst-order �lter. That is, E[D0] = 0, but individual realizations
of the watermark may not be DC-free. Intuitively one may believe that if N
is large enough, setting a �xed detection threshold accounting for E[D0] = 0
but without speci�cally compensating for D0 will not a�ect the performance
signi�cantly. Here we prove di�erent.

We address the ensemble-mean behavior, that is we average over all possi-
ble watermarks generated this way. We assume that image and watermark are
independent, so

Ey2p =
1

N2

X
n2A

X
�:n+�2A

w(n)w(n+�)Ep(n)p(n+�)

If we ignore boundary e�ects, we get

Ey2p =
1

N1N2

X
�

�w;w(�)Rp(�)

Inserting the previously discussed correlation functions of low-pass image and
watermark, one sees that

Ey2p =
X
�2A

Ew

N2
�j�j[�21 + �2�j�j]



If we ignore boundary e�ects, we get

Ey2p =
Ew�

2

N2

�
1 + ��

1� ��

�2
+
Ew�

2
1

N2

�
1 + �

1� �

�2

and, as we saw befor Ep[yp] = �1D0, so

E�2yp =
Ew�

2

N2

�
1 + ��

1� ��

�2
+
Ew�

2
1

N2

�
1 + �

1� �

�2
� �21D

2
0

This result is surprising. Inituitively one may expect that for � ! 0, this
would reduce to

E[y2p] =
Ew�

2

N2

but it tends to Ew�2=N
2 where �2 = �2 + �21. This di�erence is due to the

fact that the watermark has a random DC-component. Note that for randomly
chosen watermark pixel values, the running DC components conducts a random
walk. In fact, the term containing �1 accounts for the 
uctuations in the DC
component

P
w(n).

For a �xed threshold ythr = Ew=(2N), the error rate goes into

Pfa = Pmd =
1

2
erfc

vuuut Ew

8

�
�2
h
1+��
1���

i2
+ �21

h
1+�
1��

i2�

whereas for the threshold setting ythr = �1D0 +Ew=(2N), we �nd

Pfa = Pmd =
1

2
erfc

vuut Ew

8�2
h
1+��
1���

i2
In practice we found that typically �2 is about four times larger than �2. Perfor-
mance is di�erent by about 5 to 10 dB. This result is somewhat counterintuitive
as it shows that the e�ect of statistical 
uctuations in D0 does not vanish fast
enough if the watermark is laid over more pixels.

III.3 Example 3: Low-pass and DC-free watermark

Similar to the above analysis, one can show that for a DC-free low-pass water-
mark,

Ey2p =
Ew�

2

N2

�
1 + ��

1� ��

�2
The error rate goes into

Pfa = Pmd =
1

2
erfc

s
Ew

8�2

�
1� ��

1 + ��

�2
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Fig. 2. Watermark detection error rates Pfa and Pmd versus signal-to-noise ra-
tio Ew=�

2 for correlation detector. Experiments on "Lenna": "�": absolutely
DC-free "+": random watermark, independent pixels, DC-free i.m. Solid lines:
corresponding theoretical curves.

In other words, the variance of the interference increases with increasing �. The
stronger the watermark is limited to low-pass spatial components, the more
di�cult or unreliable the detection becomes.

This result clearly shows that if the watermark is con�ned to low-pass com-
ponents of the image, this signi�cantly a�ects the reliability of detection. In this
case the random +/- terms in yp, which are due to multiplying the image p with
the locally stored copy of the watermark ŵ, do not cancel as rapidly as these
would vanish for a white watermark. If the watermark contains relatively strong
low-frequency components (large �), the variance of yp is stronger and the error
rate is larger.

If the watermark contains relatively strong high-frequency components � � 0,
the variance is weaker, so the watermark sees less interference from the image
itself. However, such high-frequency watermark is more vulnerable to erasure by
image processing, such as low-pass �ltering (smoothing).

IV Computational and Experimental Results

The use of randomly generated sequences provides watermarks that on the av-

erage may have the desired properties, but without a guarantee that individual
watermarks also accurately possess the desired properties. In our experiments,
we approximated white and absolutely DC-free watermarks through pseudo-
random sequences. An appropriate choice appeared to be binary watermarks,
w(n) 2 f�k; kg with � = 0 generated by a 2-dimensional LFSR maximal length
sequence [?] [?] of length 214 � 1 = 127 � 129. Such sequences have a negligibly
small DC component

P
n w(n) = �1 and a correlation function that has the ap-

propriate �-function shape. Repetition of the 127 by 129 basic pattern leads to
a periodic correlation function, but maintains virtually zero correlation outside
the peaks.

Figure 3 compares the above theoretical results with measurements of the
"Lenna" image. In the �gure, we combined the results from one image and
many watermarks to get statistical results. We computed the components of the
decision variable and estimated which signal-to-noise ratio would be needed to
achieve reliable detection. Any particular image with a particular watermark
gives a step-wise transition at yw = 2yp. Combination of this step for many (104

or more) watermarks created the smooth curve.

We computed yp by correlating with a normalized reference copy of the
watermark ŵ 2 f�1;+1g. In such case yw = k, where k is the embedding



depth of the watermark. We measured yp from the image. To ensure correct
detection for a particular watermark and image, we must choose k � 2yp, so
Ew = k2N1N2 � 4y2pN1N2. To express this in terms of the signal-to-noise ra-
tio 
 = Ew=�

2, we used sample moments of the "Lenna" image to estimate �.
Other images gave essentially the same curves. The shape of the curve con�rm
the approximately Gaussian behaviour of yp.

To get consistent results, we had to generate a large set of watermarks fully
independently. If one simply shifts a single watermark to create the set of test wa-
termarks, correlation of pixels in the image leads to correlated decision variables.
Moreover, shifting a single watermark can not simulate the e�ect of a random
DC component. This leads to a signi�cant deviation from the theoretical curve
and to a more stepwise (non-Gaussian) decrease of errors rates with increasing
SNR. Images with higher correlation (such as "Teeny 1") are more sensitive to
correlations among di�erent watermark during the experimental evaluation.

V Conclusions

In this paper, we proposed a mathematical framework to model electronic water-
marks embedded in digital images. The model regards the process of embedding
and transferring a watermark to be similar to that of communication channel.
It treats the original contents (the image itself) as interference or noise.

We observe that many detectors proposed for watermarks are of the corre-
lator type, though often with minor modi�cations. Several essential di�erences
appear with the case of transmission over a linear time-invariant channel with
AWGN. Our model predicts reliability performance (missed detection and false
alarms). In some special cases, particularly that of a white, absolutely DC-free
watermark, the signal-to-noise ratio (watermark-to-content-energy) appears the
only factor to in
uence the reliability of detection. This leads to expressions
for error probabilities similar to those experienced in radio communication (e.g.
Error function of square root of signal-to-noise ratio) However, the spectral con-
tent of the watermark appears another critical parameter. If the watermark is
non-white, the spectral properties of the images are also of signi�cant in
uence.
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