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Abstract

If C is a q-ary code of length n and a and b are two codewords, then c is called

a descendant of a and b if ci 2 fai; big for i = 1; : : : ; n. We are interested in codes

C with the property that, given any descendant c, one can always identify at least

one of the `parent' codewords in C. We study bounds on F (n; q), the maximal

cardinality of a code C with this property, which we call the identi�able parent

property. Such codes play a rôle in schemes that protect against piracy of software.
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1 Introduction.

In this paper, we consider a code C of length n over an alphabet Q with jQj = q (i. e.
C � Qn). For any two words a, b in Qn we de�ne the set of descendants D(a;b) by

D(a;b) := f x 2 Qn j xi 2 fai; big; i = 1; 2; : : : ; n g: (1)

Note that among the descendants of a and b we also �nd a and b themselves.
For a code C, we de�ne the descendant code C� by

C� :=
[

a2C;b2C

D(a;b): (2)

For example, if C is the binary repetition code, then C� = Fn
2 . Similarly, if C is

the ternary Hamming code of length 4, then C� = F4

3, since it is obvious that all words
in a ball of radius 1 around a codeword are descendants of some pair containing that
codeword. (For background information on coding theory, see e.g. [5].)

If c 2 C� is an element of D(a;b), with a 2 C, b 2 C, then we call a and b parents of
c. In general, an element of C� has several pairs of parents. A trivial example are words
of C themselves. We say that C has the \identi�able parent property" (IPP) if, for every
descendant in C�, at least one of the parents can be identi�ed. In other words, for each
c 2 C� there is a codeword �(c) in C such that each parent pair of c must contain �(c).

Example 1 Consider the ternary Hamming code C of length 4, which has size 9. Since
every pair of distinct codewords has distance 3, any descendant c in C� has distance � 1
to exactly one of the parents in a parent pair. There cannot be two codewords with
distance 1 to c, so the unique codeword with distance � 1 to c is the identi�able parent.
For the other parent there are then three choices if c =2 C (and of course eight choices if
c 2 C).

We leave it to the reader to verify the following.

Lemma 1 A code C � Qn has IPP i�

IPP1: a;b; c distinct in C ) ai; bi; ci distinct in Q for some i,

IPP2: a;b; c;d 2 C with fa;bg \ fc;dg = ; ) fai; big \ fci; dig = ; for some i.

Remark that the condition [IPP1] states that the code is tri�erent, see [2],[3],[4].
We are interested in the maximal size of a code with the identi�able parent property.

We de�ne
F (n; q) := maxf jCj j C � Qn; C has IPP; jQj = q g:

Trivially, a code of cardinality 2 has IPP. If q = 2, a code of cardinality � 3 does not have
IPP. This follows from IPP1, but can also be seen directly: consider three distinct binary
words a1, a2, a3. For i = 1; : : : ; n, the i-th coordinate of c is determined by a majority
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vote over the corresponding coordinates of the three given words. Then c is clearly a
descendant of any pair taken from the three words aj. So from now on we assume q � 3.

As trivial cases we have F (1; q) = q, F (2; q) = q. (If xi, i = 1; 2, is a symbol that
occurs twice as i-th coordinate, then (x1; x2) has no identi�able parent.)

Example 2 Take n = 3. Let m := b q�1
2
c , Q = f0; 1; : : : ; q � 1g: The code C consists of

the following words :

(i) (0; 0; 0),

(ii) (0; i; i) with 1 � i � m;

(iii) (i; 0; i+m) with 1 � i � m;

(iv) (i; i; 0) with m + 1 � i � q � 1:

Clearly C has q +m words. In each position, every non-zero symbol occurs in at most
one codeword. So, if c 2 C� is not 0, then a unique parent is identi�able (possibly even
both). If c =0, then 0 must be one of the parents.

We have shown that

F (3; q) � q + bq � 1

2
c: (3)

We give a better bound in the next example. For the sake of simplicity, we do not
treat the general case but assume that q has the form q = r2 + 1.

Example 3 Let q = r2 + 1, Q = f0; 1; : : : ; q � 1g: We de�ne two codes CL and CH as
follows :

CL := f(a; b; ra+ b) j 0 � a; b < rg;
CH := f(x; x; q � 1) j r � x � q � 1g:

In CL all words start with two low values (< r) and in CH all words start with two high
values (� r). The maximal value of the third coordinate in a word of CL is

r(r � 1) + r � 1 = r2 � 1 = q � 2:

Therefore CL \ CH = ; and furthermore, the third coordinate in a word of CL clearly
uniquely determines that word. Let C := CL [CH : We have just observed that a word in
C� with a third coordinate < q � 1 has an identi�able parent in CL. So, assume c 2 C�

has the form (c1; c2; q � 1). If both c1 and c2 have low values, they uniquely determine a
parent in CL; if one of c1; c2 is high, say x, then (x; x; q � 1) must be a parent. So C has
the identi�able parent property. We have shown

F (3; r2 + 1) � 2r2 � r + 1: (4)

For the general case, a similar argument would lead to

F (3; q) � (b
q
q � 1c)2 + q � b

q
q � 1c: (5)
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In subsequent sections, we investigate the behaviour of F (n; q) for n = 3, n = 4,
and general n. Our main results are Theorems 5 and 6, which provide upper and lower
exponential bounds on F (n; q). The problem of obtaining tight bounds for F (4; q) remains
open.

2 The case n = 3.

From Example 3, we �rst conjectured that F (3; q) would behave roughly like 2q for q !1.
The following construction shows that in fact F (3; q) increases at least like 3q (roughly).
Again, we prefer simplicity and to achieve that, we assume that q has a special form, in
this case q = r2 + 2r.

Example 4 We divide the alphabet Q := f1; 2; : : : ; qg into three disjoint classes S, M ,
and L, where
S := f1; 2; : : : ; rg; (the small numbers);
M := fr + 1; r + 2; : : : ; 2rg; (the medium numbers);
L := f2r + 1; : : : ; r2 + 2rg; (the large numbers).

The code C will be the union of three subcodes Ci (i = 1; 2; 3), where

C1 := f(s1; s2; rs1 + s2 + r) j s1 2 S; s2 2 Sg;
C2 := f(m; sr +m; s) j m 2M; s 2 Sg;

C3 := f(rm1 +m2 � r2; m1; m2) j m1 2M;m2 2Mg:
Observe that C1 � S � S � L, C2 � M � L � S, C3 � L �M �M . So the codes Ci

are disjoint and C := C1 [ C2 [ C3 has cardinality 3r2. It is easy to see that C has the
identi�able parent property by the following argument.

If a word c 2 C� has a large coordinate, then this coordinate uniquely determines
a parent by the position of the large coordinate and the fact that in each Ci the large
coordinates all occur exactly once. If none of the coordinates of c is large, then clearly
the two subcodes from which the parents must come are determined. For one of these two
subcodes we know two coordinates of the parent in that subcode. Again, these uniquely
determine that parent. For example, if c = (c1; c2; c3) 2M � S � S, then the parents are
in C1 and C2 and the pair c1 2M , c3 2 S uniquely determines the parent in C2.

Therefore
F (3; r2 + 2r) � 3r2: (6)

In a similar way one can treat the general case to show that F (3; q) grows at least as
fast as 3q � 12

p
q.

We now aim to show that the previous result is essentially best possible, i. e. that
F (3; q) is roughly 3q.

Consider a code C of length 3 over Q := f0; 1; : : : ; q � 1g with the identi�able parent
property. We assume that jCj > q. We will consider a graph (which we shall also call C)
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with the words of C as vertices. We join the codewords ck and cl by an edge of \color" i
(i = 1; 2; 3) if ck and cl have the same i-th coordinate.

Lemma 2 In the graph C, no two vertices are joined by more than one edge.

Proof. If the assertion is false, then w. l. o. g. we have c1 = (0; 0; 0), c2 = (0; 0; 1) joined
by edges of color 1 and color 2. Let c3 = (x; y; a). Then the descendant (0; 0; a) shows that
a =2 f0; 1g and that no other codeword has a as third coordinate. In that case jCj � q, a
contradiction. 2

For the remainder of the discussion, we distinguish the alphabets that are used for the
�rst, second, and third coordinate (say alphabet Qi of size qi for i = 1; 2; 3). We call C a
(Q1; Q2; Q3)-code. As an immediate corollary of Lemma 2 we have

jCj � qiqj (1 � i < j � 3): (7)

This follows from the pigeonhole principle.
Clearly, for each of the colors i considered separately, C is a union of disjoint cliques.

As a consequence of the identi�able parent property, there are two forbidden subgraphs
in C.

Lemma 3 (i) C does not contain a triangle fc1; c2; c3g with edges of three di�erent colors;
(ii) C does not contain a chain c1 � c2 � c3 � c4, where the three edges have three
di�erent colors.

Proof. (i) A triangle with edges of three di�erent colors would imply that C has a subset
of type

f(a; b; x); (a; y; c); (z; b; c)g
and then (a; b; c) is a descendant of any two of these words.

(ii) A chain with three di�erent colors would imply that C has a subset of type

f(a; x; y); (a; b; z); (u; b; c); (v; w; c)g

and then (a; b; c) is a descendant of both the �rst and third and of the second and fourth
element of this subset. 2

We now consider the graph C, disregarding the colors for a moment. Pick a connected
component S and then reconsider the colors occurring in S. We distinguish three cases,
depending on the number of di�erent colors in S. Clearly every alphabet Qi can be split
into two disjoint subsets Q0

i and Q
00
i , such that S is a (Q0

1; Q
0
2; Q

0
3)-code and CnS involves

the other subalphabets.
Case (i) : All edges in S have color 1. Then S is a clique of color 1 and furthermore

the second, respectively third coordinates of words in S are all di�erent and (as observed
above) do not occur in any other codeword of C. Here we obviously have jQ0

1j = 1.
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Case (ii) : Two colors occur in S, say 1 and 2. In that case all words in S have a
di�erent third coordinate that does not occur in CnS.

Case (iii) : If all three colors occur in S, then the forbidden con�gurations show that
S must be the union of three cliques, of colors 1,2,3, respectively, that have exactly one
common vertex. (To see this, �rst show that there exists a point incident with edges of
all three colors.)

We can now estimate the cardinality of S in each of the three cases. In case (i) we
trivially have

jSj = jQ0
2j = jQ0

3j: (8)

In case (ii) it is again trivial that
jSj = jQ0

3j: (9)

Case (iii) is more di�cult to analyze. Let c be the common vertex of the three cliques.
Let these cliques have cardinality s1, s2, s3. All vertices di�erent from c in the cliques
of color 2, respectively color 3, have di�erent �rst coordinates, also di�ering from the
common �rst coordinate in the clique of color 1. Therefore

jQ0
1j = 1 + (s2 � 1) + (s3 � 1);

and similarly for Q0
2 and Q0

3. Since jSj = s1 + s2 + s3 � 2, we �nd

jSj = jQ0
1j+ jQ0

2j+ jQ0
3j � 1

2
: (10)

In all three cases, we have

jSj � jQ0
1j+ jQ0

2j+ jQ0
3j � 1: (11)

This argument shows that C is the union of disjoint codes, all of which satisfy (11),
hence the cardinality of C satis�es

jCj � jQ1j+ jQ2j+ jQ3j � 1: (12)

In our case, the three alphabets Qi all have size q, so we conclude the following.

Theorem 1

F (3; q) � 3q � 1:

3 The case n = 4

We begin with an example showing that F (4; q) behaves (roughly) at least like q
p
q. Again

for simplicity, we assume that q is a square, say q = r2. As letters of our alphabet Q (of
size q) we take all pairs (a; b) from R2, where R := f0; 1; : : : ; r�1g. We use addition mod
r in R.
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We de�ne

C :=
n
((a1; a2); (a1; a3); (a2; a3); (a1 + a2; a3)) j (a1; a2; a3) 2 R3

o
:

Clearly jCj = r3 = q
p
q. Note that a word in C is uniquely determined if two of its

coordinates are known.
Let (�; �; 
; �) = ((�1; �2); (�1; �2); (
1; 
2); (�1; �2)) be a descendant in C

�. We distin-
guish two cases :

(i) Among �, �, 
 two obviously are from di�erent parents, say w. l. o. g. � and �. So
�1 6= �1 and the parents look like

((�1; �2); (�1; x); (�2; x); (�1 + �2; x))

and
((�1; y); (�1; �2); (y; �2); (�1 + y; �2)):

If there is doubt about the parent that yielded 
, then we must have �2 = 
1 = y,
x = 
2 = �2. Then, since �1 6= �1, the coordinate � uniquely determines one of the
parents.

(ii) If we are not in case (i), then we must have �1 = �1, �2 = 
1, �2 = 
2. Two of the
coordinates �, �, 
 must come from the same parent and they uniquely determine this
parent. Fortunately, each of the three possible pairs determine the same parent, namely
((�1; �2); (�1; �2); (�2; �2); (�1+�2; �2)), which is therefore one of the parents. The other
parent is one of the words ending in (�1; �2).

We have shown that C is a code of length 4 and cardinality q
p
q that has IPP.

Alternative proof:
Note that C has minimum distance dH(C) = 3. Hence IPP1 is trivially satis�ed.
Let c(�) = ((�1; �2); (�1; �3); (�2; �3); (�1 + �2; �3)). Suppose that fc(�)i; c(�)ig \
fc(
)i; c(�)ig 6= ;, for i = 1; : : : ; 4. W.l.o.g we may assume that c(�)1 = c(
)1, whence
�1 = 
1 and �2 = 
2. Since dH(C) = 3, in the non-trivial case there is a permutation
i2; i3; i4 of 2; 3; 4 such that c(�)i2 = c(�)i2 , c(�)i3 = c(
)i3 , and c(�)i4 = c(�)i4. This
implies �3 = �3, �3 = 
3, and �3 = �3, whence also �3 = 
3, so � = 
 and c(�) = c(
).
Hence IPP2 is also satis�ed, and C has IPP.

It is not possible to extend this code without losing IPP. To show this, assume that

x = (x1; x2; x3; x4) = ((�1; �2); (�1; �2); (
1; 
2); (�1; �2)) =2 C�:

Consider C 0 := C [ fxg. Choose � such that � 6= �2, � 6= �1 + �2 � �1.
The code C contains the following three distinct codewords :

u = (u1; u2; u3; u4) = ((�1; �2); (�1; �2); (�2; �2); (�1 + �2; �2));

v = (v1; v2; v3; v4) = ((�1; �); (�1; �2); (�; �2); (� + �1; �2));
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c = (c1; c2; c3; c4) = ((� + �1 � �2; �2); (� + �1 � �2; �2); (�2; �2); (� + �1; �2)):

(These codewords are distinct because of the two restrictions that we made on �.)
Now, both the pair fu;vg and the pair fx; cg have as descendant

(u1; v2; u3; v4) = (x1; x2; c3; c4):

We have shown that C is maximal with respect to IPP but of course not that jCj is
maximal. Indeed, in Example 1 we discussed a ternary code of size 9 with IPP. We
consider this code as a code over an alphabet of size four (in which one of the letters is
not used). Adding a word containing the remaining letter in each coordinate does not
destroy IPP, hence we see that F (4; 4) � 10, while the above construction with q = 4
produces a code of size 8.

The best upper bound that we could obtain (see the next section) shows that F (4; q) =
O(q2). It would be interesting to try and close this gap.

4 Some comments on the general case

The form of the conditions IPP1 and IPP2 suggests the following construction by concate-
nation. Let C � Qn, jQj = q, and D � Rm both have IPP, and suppose that jCj = jRj.
By identifying C and R, we can consider the code D as a code of length nm over Q, and
by applying IPP1 and IPP2 twice we see that this code over Q again has IPP. So we have
proved the following result.

Theorem 2 F (nm; q) � F (m;F (n; q)).

For certain classes of codes, it is easy to see that IPP holds. We start with equidistant
codes.

Theorem 3 If C is an equidistant code of length n over an alphabet of size q and with
distance d, then C has the identi�able parent property if d is odd or if d is even and
n < 3

2
d.

Proof. If a 2 C, b 2 C, and c 2 D(a;b), then clearly

d(a; c) + d(b; c) = d:

If d is odd then one of the words a, b is the unique codeword with distance < 1

2
d to c.

If d is even and there is doubt about the parents of a word c 2 C�, then c must have
distance 1

2
d to at least three codewords. From this one immediately �nds n � 3

2
d. 2

To make other general statements, we �rst analyze what it means that a code C does
not have IPP. One of two things can happen:
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(i) There is a word c 2 C� such that each pair from fu;v;wg is a parent pair, where
u, v, w are in C.

(ii) There is a word c 2 C� and four distinct words u, v, x, y in C such that both
fu;vg and fx;yg are parent pairs of c.

We analyze case (i). Let d be the minimum distance of C. Let d(u;v) = d1, d(u;w) =
d2, and d(v;w) = d3. We now must have

n � (n� d1) + (n� d2) + (n� d3);

i. e. 3d � 2n.
In case (ii) we �nd in the same way that 4d � 3n. It follows that if d � 3n+1

4
, then C

has IPP. This implies the following theorem.

Theorem 4 Let q be a prime power. If q � n� 1 then a (shortened, extended, or doubly
extended) Reed-Solomon code over Fq with parameters [n; dn

4
e; n�dn

4
e+1] exists and has

IPP.

Corollary 1 If q � n� 1 and q is a prime power, then F (n; q) � qd
n

4
e.

For example, if q � 4, there is a [5,2,4] MDS code C over Fq and hence F (5; q) � q2.
Indeed, for every word c 2 C� there is at least one word a in C (namely one of the
parents) with distance at most 2 to c. This must be a parent, since otherwise there would
be two other parents and one of these would then have distance � 3 to a.

If we consider r-tuples of symbols from the alphabet Q of size q as symbols from the
alphabet Qr, then a code C of length n = mr over Q that has IPP is also a code of length
m over Qr with IPP. This immediately implies the following theorem as a consequence of
Theorem 1.

Theorem 5 We have that F (n; q) � 3qd
n

3
e:

So, for instance, we see from this and Corollary 1 that for a prime power q � 4 we
have

q2 � F (5; q) � 3q2:

(In fact, using (12), it is easy to sharpen this result to q2 � F (5; q) � 2q2 + q � 1.)
We shall prove a lower bound using the Lov�asz Local Lemma (cf. [1], see also [7], [6]).
Let A1; A2; : : : ; An be events in a probability space and assume that Pr(Ai) � p

for each i. A graph G on the vertices 1; 2; : : : ; n is called a dependency graph for the
events Ai (i = 1; 2; : : : ; n) if for each i, the event Ai is independent of every subset of
fAj : fi; jg =2 E(G)g. One version of the Lov�asz Local Lemma states that if each vertex
of G has degree � d (d � 1) and 4dp < 1, then Pr( �A1 ^ �A2 ^ : : : ^ �An) 6= 0. For a proof
by induction see [7], where a stronger version is given.
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We now consider N words c1; c2; : : : ; cN of length n over an alphabet of size q, where
each word is chosen randomly. For each 4-tuple X = fi; j; k; lg from f1; 2; : : : ; Ng the
event AX is : \The code fci; cj; ck; clg does not have IPP or contains two equal words."
If we de�ne the graph G on the 4-tuples from f1; 2; : : : ; Ng by X � X 0 if and only if
X \X 0 6= ;, then G is a dependency graph for the events AX . As we saw above, Pr(AX)
is the probability that the 4-tuple contains a bad triple, i.e., a triple such that the three
pairs from this triple have a common descendant, or that the 4-tuple is a bad 4-tuple,
i.e., the 4-tuple can be split into two pairs that have a common descendant, or that the
4-tuple contains a bad pair, i.e., a pair of two equal words.

For the �rst of these, note that there are four ways to choose the triple and that for
each coordinate position the probability that two or three of the codewords have the same
coordinate in that position is less than 3

q
. For the second and third possibilities, we can

argue similarly and thus �nd

Pr(AX) � 4(
3

q
)n + 3(

4

q
)n + 6(

1

q
)n =: p:

Each vertex of G has degree

d :=

 
N

4

!
�
 
N � 4

4

!

=
1

24
f16N3 � 168N2 + 632N � 840g:

Asymptotically, the condition 4dp < 1 yields

N
<�1

2
(
q

4
)
n

3 :

Application of Lov�asz's Local Lemma shows that if 4dp < 1 then Pr(\ �AX) > 0, which
means that a code with IPP exists. Since p � 5(4

q
)n and d � 2

3
N3, n � 3, we have proved

the following theorem.

Theorem 6 For n � 3, there is a constant c such that

F (n; q) � c
�
q

4

�n

3

:

From our calculations above, it follows that we could take c = 0:4. For large q,
Theorem 6 is better than Corollary 1.

Remark 1: J. K�orner (private communication) suggested an alternative proof of The-
orem 6 by means of the \expurgation method". Here, the idea is the following. Again,
we choose at random N words of length n from an alphabet of size q. By linearity of
expectation, the average number E of bad pairs, triples, and 4-tuples is

E � (
1

q
)n
 
N

2

!
+ (

3

q
)n
 
N

3

!
+ 3(

4

q
)n
 
N

4

!
� 1

8
N4(

4

q
)n: (13)
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Now choose N such that
E � (1� �)N; (14)

where � will be specialized later. If we remove a word from each bad pair, triple, or
4-tuple, then the remaining collection C of words has IPP. We conclude that there is a
collection C of size jCj � �N that has IPP. Combining (13) and (14) shows that we may
take

N � 2(1� �)1=3(
q

4
)n=3;

whence
jCj � 2(�3(1� �))1=3(

q

4
)n=3:

The above lower bound is optimal when � = 3=4, in which case we obtain that

jCj � (27=32)1=3 (
q

4
)n=3:

Remark 2: A more careful calculation of the relevant probabilities used in both proofs
will show that

F (n; q) � c(q3=(4q2 � 6q + 3))n=3:

It follows that

f(3) := lim inf
n!1

n�1 logF (n; 3) � log(q=(4q2 � 6q + 3)1=3):

Remark 3: In both of the above constructions, it might be interesting to start with an
alphabet R where the letters are identi�ed with the codewords of a code with IPP of
length m and size jRj = F (m; q) over an alphabet Q of size q. Then the observation at
the beginning of this section shows that the code that is obtained, when considered as a
code over Q, again has IPP. (Cf. [2].) For example, when q = 3, we have that F (4; 3) = 9,
attained by the ternary Hamming code of length 4. Now by applying one of the above
constructions with an alphabet size of 9 and using the result from Remark 2 we may
conclude in this way that

f(3) � 12�1 log(35=91):

Unfortunately, this is slightly worse than the bound f(3) � 3�1 log(9=7) obtained by a
direct application of the result in Remark 2. Compare this with [2], where this idea leads
to the best known lower bound for tri�erence. (Further details are left to the reader.)

5 Discussion

Multi-media publishers can "�ngerprint" images by changing perceptually insigni�cant
aspects in order to be able to trace violation of copyright restrictions. Here, the idea is
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that if di�erent customers receive a version of an image with di�erent �ngerprint, then the
customer who illegally redistributes his or her version of the image can be traced. This
paper investigates sets of \�ngerprint codewords" with the property that if two users
create a new image by combining parts of their images, then the new image reveals the
identity of at least one of the source images. Our results show that for �xed alphabet size
the maximal size of such codes grows exponentially with the codeword length.
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