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ABSTRACT

We derive a watermark detector for images which are
watermarked in a multiplicative way. Under the as-
sumptions that the watermark coe�cients are a known,
binary valued sequence and that the original image co-
e�cients are an i.i.d. random sequence from a Weibull
distribution, we show that this watermark should be
detected by raising the observations to the power � be-
fore correlating them with the watermark (here � is the
parameter in the exponent of the Weibull probability
density function). The approach is based on maximum-
likelihood estimation of the embedding strength of the
watermark. The result is illustrated by experiments and
an extension to Gaussian distributed data is discussed.

1 Introduction

An important issue in digital watermarking is the con-

ict between robust detection and perceptibility. On
the one hand, a watermarked image should only be an
imperceptible modi�cation of the original image, but at
the same time the watermark should be robustly de-
tectable, which is easiest if embedding the watermark
leads to a considerable change of the image. To be able
to have practical watermarking schemes, it is of eminent
importance to have good detection schemes available.

In the literature it is very common that the watermark
is embedded in an additive way, i.e.,

qi = pi + swi;

where fwig is the watermark sequence, fpig is the orig-
inal image, fqig is the watermarked image and s is the
strength of embedding. In the Gaussian case, if the
image fpig is unknown, such an additive watermark is
optimally detected by correlation with the watermark.
This can be proven using a version of the matched �l-
tering theorem. Many re�nements and improvements of
this detection scheme are known, for instance by using
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whitening or Wiener �lters. We cannot give an exhaus-
tive list of articles dealing with optimal detection of ad-
ditive watermarks. Instead, we refer to the very recent
papers [3], [4], [5], [6].
In this paper we want to look at a di�erent way of

embedding watermarks: multiplicative embedding. The
watermarked coe�cients qi are now formed from the
watermark coe�cients wi and the original image coe�-
cients pi according to

qi = pi(1 + swi); (1)

where s is the embedding strength. This way of embed-
ding was proposed, among others, by Cox et.al. [1]. It
provides a way of perceptual masking of the watermark
in the image. It is well-known that straightforwardly
embedding a watermark in an additive way will result
in an image with perceptible artefacts. The perceptual
e�ect of the watermark can be decreased by using per-
ceptual masking, for instance Weber's law. It tells us
that for images the luminance of a pixel is a useful per-
ceptual mask. This mask would lead to the multiplica-
tive embedding studied in this paper, as in equation (1).
It is unlikely that straightforward correlation with the

watermark pattern would be the optimal manner of de-
tecting the presence of the watermark in the multiplica-
tive case, as well. Optimal detection, in the sense of
Bayes criterion or the Neyman-Pearson Criterion, leads
to a likelihood ratio test: hypothesis H0 is accepted if
the likelihood ratio

�(Q) =
fQ(QjH0)

fQ(QjH1)

exceeds a certain threshold, where Q is the observation
and fQ is the probability density function of Q. In the
case of a simple hypothesis H0 and alternative H1 this
leads to a tractable problem. In our case, however, the
hypothesis is simple (H0 : s = 0) and the alternative
is composite (H1 : s 6= 0). The composite alternative
leads to a complication in computing the likelihood ra-
tio. We have

fQ(QjH1) =

Z
fQ(Qjs)fs(sjH1)ds;



and so we will have to know the probability distribution
of s givenH1. We do not want to assume this knowledge,
and so the likelihood ratio test becomes unusable for our
problem. Therefore we take a di�erent approach, based
on maximum-likelihood estimation of s.
De Rosa et.al [2] consider optimal detection for the

same type of multiplicative embedding. They derive an
optimal detector based on a likelihood ratio test for im-
age coe�cients satisfying a Weibull distribution. They
circumvent the problem sketched above by taking a �xed
value of s, i.e., by testing H0 : s = 0 against H1 : s = s�,
for a �xed value s�. For this it would be necessary to
have a good guess for the actual value of s. Of course,
knowledge of the embedding process could give some in-
formation about s. Still we think it is not reasonable
to assume knowledge on the actual value of s, since the
e�ect of many attacks on the watermarked image can
roughly be modelled by a decrease of this value.
Note that for the present discussion of detection meth-

ods it is not relevant whether pi and qi are spatial vari-
ables (like the luminance values of a picture), temporal
variables (like the sound intensity in an audio frame),
frequency variables (like DFT or DCT coe�cients) or
any other set of representative variables. Of course, the
particular choice may have a strong impact on percep-
tibility and robustness of the watermark, as well as on
which statistical model is suitable for the image coe�-
cients.

2 Main result

In the present section we formulate and prove our main
result: the derivation of a detector for multiplicative wa-
termarks based on maximum-likelihood estimation of s.
This is done under the assumption that the original data
are modelled by a Weibull probability density function
with parameters � and �:

f(x) =
�

�

�x
�

���1
e�(

x
� )

�

; (2)

We show that under this assumption, our detector con-
sists of raising the data to the power � and subsequently
correlating with the watermark. We do not restrict a
priori what values s can take, except that s should be
su�ciently small, so that the watermark is impercepti-
ble.
DCT and DFT coe�cients are usually modelled by a

Weibull distribution (See for instance De Rosa et.al [2]).
The Rayleigh distribution is a special case, correspond-
ing to � = 2. We also formulate our result for the Gaus-
sian case, because the analysis turns out to be com-
pletely similar to the case of the Weibull distribution
In the sequel, we use the following shorthand notation:

ha; bi = 1

N

PN
i=1 aibi and kak =

pha; ai.
Theorem 2.1 Consider the sequences P = fpi : i =
1; : : : ; Ng, W = fwi : i = 1; : : : ; Ng and Q = fqi :
i = 1; : : : ; Ng. Assume that P is an i.i.d. sequence of

stochastic variables, drawn from a Weibull distribution
with parameters � and � (see eqn. (2)). Moreover as-
sume that W is a known, zero-mean, binary valued se-
quence (i.e., 8i : wi = �1).
The maximum-likelihood decision variable is given by

d =
1

N

NX
i=1

q�i wi: (3)

The idea of the proof is as follows. We derive a
maximum-likelihood estimator for s. That is, we derive
the joint probability density function f(Q; s) for the ob-
servations Q = fqig, given s. The maximum-likelihood
estimate ŝ is the value of s which maximises f for the
observed values of qi. It follows that ŝ is proportional
d = 1

N

PN
i=1 q

�
i wi.

The requirement that the watermark be zero-mean
comes down to partitioning the index set f1; : : : ; Ng into
two subsets, one of which corresponds to wi = 1 and
the other to wi = �1. The requirement that pi are
identically distributed can be achieved by pre-whitening
the data. How exactly this should be done in the context
of multiplicative watermarks is the subject of further
research.
To be able to set a threshold for the detection, we

need to have some information about the probability
distribution of d as a function of s.

Theorem 2.2 Consider the situation of Theorem 2.1.
d satis�es

E[djs;W ] = s��� +O(s3);
var(djs;W ) =

1

N
(1 + (2�2 � �)s2)�2� +O(s3):

An important measure of the strength of an estima-
tion method is the quotient between the expected value
of d (depending on s) and the standard deviation of d
for s = 0. In the case of Rayleigh distributed data and
the detection method of Theorem 2.1, we obtain

E[djs;W ]p
var(djs = 0;W )

= 2
p
Ns:

If, instead, we would use linear correlation (i.e., dl =
hQ;W i), we have

E[dljs;W ] = s; var(dljs;W ) =
�2(4� �)

2N
;

and so the quotient would be

E[dljs;W ]p
var(dljs = 0;W )

=

p
2
p
Ns

�
p
4� �

;

which di�ers from the value for correlation with squared

observation by a factor �
p
4��p
2

.



3 Extension to the Gaussian distribution

The results in the previous section extend straightfor-
wardly to the case of pi having a zero-mean Gaussian
distribution with variance �2. We will not repeat proofs,
but just formulate the result

Theorem 3.1 Let pi be an i.i.d. sequence drawn from
a zero-mean Gaussian distribution with variance �2.
Moreover, assume that wi is a binary valued, zero-mean
sequence, and let qi = pi(1 + swi). The maximum-
likelihood detector is given by (3).
Furthermore, d satis�es

E[djs;W ] = 2s�2

var(djs;W ) = 2�4(1 + 6s2 + s4)=N:

4 Experimental results

The theory of the previous sections has been applied to
the case of audio watermarking by means of modula-
tion of Fourier coe�cients. For the experiment a well
known 15 second audio clip x (donna) is watermarked by
convolving with a length 1023, DC-free, zero-phase and
normally distributed random �lter w. After scaling the
convolved sequence y to have the same standard devia-
tion as x, the watermarked clip is obtained as z = x+�y,
where � controls the energy of the watermark. It is not
di�cult to see that the described procedure is equivalent
to multiplicative embedding in the frequency domain,
modulating with the Fourier transform W of w.
For detection, (a selected interval of) the water-

marked clip z is convolved with a simple high pass FIR
�lter, cyclically folded to a length 1024 sequence, and
transformed to a spectral representation Z by means
of a fast Fourier transform. Fitting the sequence jZj
to a Weibull distribution, we �nd a Weibull exponent
� = 0:95 Raising jZj to the power 
, 
 = 0:5; : : : ; 2 and
computing the inner product with W , a decision value
d0(�; 
) is obtained. By computing the ratio of this num-
ber with the standard deviation of a large number of
detection results obtained with false watermarks W 0, a
reliability measure d(�; 
) is obtained. The results of
the experiments are presented in Figure 1.
The �gure clearly shows that optimal reliability is

achieved for a value of 
 slightly smaller than 1, in ac-
cordance with the value of the Weibull exponent �.

5 Conclusions

In this paper we have derived an optimal detector for
multiplicative watermark, under the assumption that
the image coe�cients are distributed according to a
Weibull distribution with parameters � and �. Our
derivation shows that the observations should be raised
to the power � before correlation. The resulting detec-
tor di�ers from those used nowadays, which are based on
correlating the observations with the watermark. This
result shows that very likely it is possible to improve on
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Figure 1: Detection reliability for varying embedding
strength and detection exponent.

the common practice to use correlation of a watermark
directly with the data to detect additive watermarks
which are embedded using perceptual masks (the result
of which embedding can be modelled by a multiplicative
watermark).

6 Proofs

In this section we give the proofs of our theorems

Proof of Theorem 2.1 As pi is distributed according
to a Weibull distribution with parameters � and �, the
joint probability density function of fqig, where qi =
pi(1 + swi) and s is viewed as a parameter, is given by

f(Q; s) =
NY
i=1

�qi
�2(1 + swi)2

e
�
�

qi
�(1 + swi)

��

:

The paradigm of maximum-likelihood estimation now
means that we estimate s such that the estimate ŝ max-
imises the above joint probability density. It is equiva-
lent, but notationally easier, to maximise the logarithm
of f :

L(Q; s) = N log(�) � 2N log(�)� 2
NX
i=1

log(1 + swi)

+
NX
i=1

log(qi)�
NX
i=1

�
qi

�(1 + swi)

��

:

Now, we need to solve

@L

@s
= �2

NX
i=1

wi

1 + swi

+
NX
i�1

�q�i wi

��(1 + swi)�+1

= 0:

Because of imperceptibility requirements, it is reason-
able to assume that jsj is small. Therefore, we replace

3



@L=@s by its �rst order Taylor expansion

@L

@s
�

NX
i=1

�2wi(1� swi) +
�q�i wi

��
(1� (� + 1)swi)

= 0:

Solving for s and using the fact that fwig is a zero-mean
sequence leads to

ŝ =
� 1

N

PN
i=1 q

�
i wi

(�2 + �) 1
N

PN
i=1 q

�
i w

2
i � 2��w2

i

:

Using the fact that w2
i = 1, we obtain

ŝ =
�hq�i ; wii

(�2 + �)kQ�k � 2��
:

Proof of Theorem 2.2 This proof is a matter of
long but straightforward computations. All summations
are over the range 1; : : : ; N . Using some standard in-
tegration tricks, it can be computed that Ep�i = �� ,

Ep�i p
�
j = (1 + �ij)�2� .

First,

E[djs;W ]

= E[
1

N

X
i

q�i wi js;W ] =
1

N

X
i

(1 + swi)
�wiEp

�
i

=
��

N

X
i

�
wi + �sw2

i +
1

2
(�2 � �)s2w3

i

�
+O(s3)

=
���s

N

X
i

w2
i = s��� :

Secondly,

E[d2js;W ]

=
1

N2

X
i;j

(1 + swi)
�(1 + swj)

�wiwjEp
�
i p

�
j

=
1

N2

X
i;j

(wi + �sw2
i +

1

2
(�2 � �)s2w3

i ) �

(wj + �sw2
j +

1

2
(�2 � �)s2w3

j )Ep
2
i p

2
j +O(s3)

=
a�

N2

X
i

w2
i + �2s2w4

i + 2�sw3
i + (�2 � �)s2w4

i

+
a�

N2

 X
i

�sw2
i

!2

+O(s3)

= �2��2s2 +
�2�

N
(1 + (2�2 � �)s2) +O(s3);

where we used the fact that summations over odd powers
of wi or wj are equal to zero. Using this, we obtain

var(djs;W ) = E[d2js;W ]� (E[djs;W ])2

=
1

N
(1 + s2(2�2 � �))�2� +O(s3):

References

[1] I.J. Cox, J. Killian, F. Thomson Leighton, and
T. Shamoon. Secure spread spectrum watermark-
ing for multimedia. IEEE Transactions on Image
Processing, 6:1673{1687, 1997.

[2] A. de Rosa, M. Barni, F. Bartolini, V. Cappellini,
and A. Piva. Optimum decoding of non-additive full
frame DFT watermarks. In Proceedings of the Third
International Information Hiding Workshop, pages
167{179, Dresden, 1999.

[3] J.R. Hernandez and F. Perez-Gonzalez. Statistical
analysis of watermarking schemes for copyright pro-
tection of images. Proceedings of the IEEE, 87:1142{
1166, 1999.

[4] J.P. Linnartz, G. Depovere, and T. Kalker. On the
design of a watermarking system: considerations and
rationales. In Proceedings of the Third International
Information Hiding Workshop, pages 303{314, Dres-
den, 1999.

[5] M.L. Miller and J.A. Bloom. Computing the proba-
bility of false watermark detection. In Proceedings of
the Third International Information Hiding Work-
shop, pages 154{166, Dresden, 1999.

[6] S. Voloshynovskiy, A. Herrigel, N. Baumgaertner,
and T. Pun. A stochastic approach to content adap-
tive digital image watermarking. In Proceedings of
the Third International Information Hiding Work-
shop, pages 219{244, Dresden, 1999.

4


