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Abstract. Theoretical modeling of watermarks allow prediction of the
detector reliability and facilitates the development of more reliable sys-
tems. In particular, mathematical evaluation is relevant to estimate the
rate at which “false alarms” occur. In this paper, the probability of in-
correct detection (missed detection or false alarm) is expressed in terms
of the watermark-energy-to-image-luminance-variance ratio. We present
some counterintuitive results which show for instance that the reliability
of detection significantly depends on spatial correlation in watermark.
Moreover we find that a small but uncompensated random DC compo-
nent in the watermark can have a significant effect on the reliability.

Background

New multi-media networks and services facilitate the dissemination of audio and
video content, but at the same time make illegal copying and copyright piracy
simple. This has created a need to embed copyright data in the content in an
indelible way. Particularly if watermark detection is part of an active copy control
concept on Consumer Electronics (CE) and PC platforms, typical requirements
include: [1], [2], [3], [4], [5], and [6]
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Erasing or altering the watermark should be difficult.

The watermarking scheme should be robust against typical transmission and
storage imperfections (such as lossy compression, noise addition, format con-
version, bit errors) and signal processing artefacts (noise reduction, filtering),
even if such operations are intended to erase the watermark.

. It should be robust against typical attacks, e.g. those described in [5].
. False alarms, i.e., positive responses for content that does not contain a

watermark should not occur (orders of magnitude) more often than electronic
or mechanical product failures. CE devices or PC-s should not fail to work
due to an erroneously triggered watermark detector.

. The watermark should be unobtrusive, and not be annoying to bona-fide

users.

The ”low false alarm” requirement appears to be too stringent to determine

the error rates only by experiments. This has been our motivation to develop a
mathematical model for the reliability of watermark detectors.



The aim of this paper is to contribute to the understanding and modelling
of the reliability of watermark detectors. This involves the development of a
mathematical framework and verification of critical assumptions.

The organization of the paper is as follows. Section II models the image
(Section II.1) and the watermark (Section I1.2- 11.4). The analysis presented in
this paper requires a detailed definition of the DC-component and the spatial
correlation of the watermark, which we include in Section I1.3 and II.4, respec-
tively. Section III discusses the detector. The reliability of a generic correlator
is derived, and special cases are dealt with. A few counterintuitive results are
obtained, discussed and verified. Numerical results are plotted in Section IV,
and verified by experiments. Section V concludes this paper.

IT Formulation of the Model

Our model extends previous work, such as [1], [2], [3], and [6] to regard the
image as noise or interference during the detection of a weak wanted signal
(namely the watermark). However, we consider spatial correlation properties of
the image to be known to a large extent and we address (pseudo-) randomness
in the watermark generation.

II.1 Image Model

We consider a rectangular image of size N = N; N, pixels. The (gray level or)
luminance of the pixel with coordinates n = (n1,ns), (0 <n; < Ny —1,0 < ng <
N, — 1) is denoted as p(n). We denote 0 = (0,0), e; = (1,0) and ez = (0,1), so
n = nje; + nses. The set of all pixel coordinates is denoted as An, where

AN:{HZOS’nlSNl—l,OSTLQSNQ—l}.

In color pictures, p(n) is a YUV or RGB vector, but for the sake of simplicity
we restrict our discussion to the luminance of the image, in which p(n) takes on
real or integer values in a certain interval.

The k-th sample moment of the gray level of each pixel is denoted as u; =
Alp* ()] = ¥ Xpea, P(n), where A is a spatial averaging operator over area
Ap. In particular, p; represents the average value or “DC-component” in a pixel
and py = A[p?] represents the average power in a pixel and E, = Nyus is the
total energy in an image. The sample variance is 02 = A[p(n) — p1]? = p2 — p3.

We assume that the image has homogeneous statistical properties (wide-sense
spatial stationarity), so the spatial correlation only depends on the difference
vector A. We define

Lp(A)=+ 3 pljp(n + 4),

ncAn

In order to make the evaluation of our examples tractable, we simplify the image
model assuming the first-order separable autocorrelation function (acf) [10], [7],

(8]
Ipp(4) = N% +o2all



where we defined |A| = |A;| 4+ |Az|. Here o can be interpreted as a measure
of the correlation between adjacent pixels in the image. Experiments, e.g. in [6]
reveal that typically a = 0.9...0.99. We denote p(n) as the non-DC components
of the image, i.e., p(n) = u; + p(n), so I5 ; = o2al?l.

Some of the above assumptions seem a crude approximation of the typical
properties of images. From experiments such as those to be reported in section
V, it will appear that estimates based on this simplification are nonetheless rea-
sonably accurate for our purpose. The accuracy of the model will be verified
by measuring g, 0 and « from images and using these parameters in a theo-
retical evaluation, which we compare with purely experimental results. These
assumptions, however, exclude certain images, such as binary images, line art or
computer-generated graphics with a limited number of grey levels.

II.2 Watermark Model

The watermark is represented by w(n) which takes on real values in all pixels
n € Ay. A watermark detector has to operate on the observed (marked or
unmarked) image g(n). We aim at detecting whether a particular watermark is
present or not, based only on the knowledge of w(n). In copy control applications,
the unmarked original p(n) is not available at the detector. Watermarked images
have similar properties as unmarked images, except that perceptually invisible
modifications have been made. We assume ¢(n) to provide sufficiently reliable
estimates of the properties (u and I}, ;) of p(n).

The watermark w(n) is embedded in the image. Typically, ¢(n) = p(n) +
f(n)w(n), where we do not yet specify the embedding depth #(n). In the analysis
we will focus on detection, thus simplify the embedding process by taking 6(n) =
1forallne Ay.

Our model implicitly assumes that no spatial transformation of the image
(resizing, cropping, rotation, etc.) is conducted. Such transformation may require
a search during detection, which is outside the scope of this analysis.

In the following, we will not consider a particular, fully described watermark
but a class of watermarks having specific spatial properties. In practice, this
could be the set of all watermarks that are generated by a certain algorithm,
but with different seeds for the pseudo-random generator.

For two watermarks w; and ws out of such class, the (deterministic) spatial
inner product is

1
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where we assume for simplicity that n + A wraps around when it formally falls
outside the set An. The total energy in the watermark equals

E,= Y w(n)=NI,.(0).
ncAn



If we consider an ensemble of many watermarks generated by a particular wa-
termark generation algorithm, the statistical correlation is defined as

Ry w, (A) = Elwi (n)ws(n + A)]

For virtually all watermark generators that we are aware of, the expected value
of a measured Iy, equals R, , with negligible small deviations if the size of
the watermark set A is sufficiently large.

Such a property does not hold for images, where due to the lack of ergodicity,
it is unlikely that the spatial correlation I}, , of a particular image converges
in mean-square to the statistical correlation R, , over acollection of different
images.

II.3 DC components

The DC content of the watermark is defined as Dy = Alw(n)] = § e 4, w(n).
An individual watermark is DC-free iff Dy = 0. This cases has been addressed
extensively by Pitas [1] and others.

For an arbitrary value of Dy, we observe that

NQD(% = ZHEAN EI(EAN w(n)w(k) = Ew + ZI’IEAN EkGAz\J,l(;én’w(n)u)(k)
=Ey+ Y neay azgowuwm+A)=Ey+ N3 Ao lww(A)
(1)

This implies that a designer who desires to choose Dy and E,, must face restric-
tions on the spatial correlation I, .

In practice, a watermark can for instance be created by randomly generating
a +k or —k pixel value independently for each pixel n. Then, Dy is a random
variable with zero-mean (EDgy = 0) and positive variance. Thus, each individual
watermark does not necessarily have a zero DC component. We call a watermark
generation process or a set of watermarks to be ”statistically DC-free” or ”DC-
free in the mean” iff EDy = 0. This is a necessary, but not a sufficient condition
for all individual watermarks to be DC-free. When the generation process is
DC-free with probability one, we call it absolutely DC-free, or adopting a term
used in probability theory [15], we write “(almost) surely” (a.s.) DC-free.

II.4 Watermark Spectrum

Quasi-white watermarks: For a watermark with a given Dy, one can consider
the class of (quasi-) white watermarks, which satisfy Iy, (A1) = [ w(A2) =1
for Ay, Az # 0, where 7 is some constant (|| << E,/N). In such case the
spatial autocorrelation resembles a d-function with a peak of amplitude E,,/N
at A =0. For A#0,

Luw(A) = 5= (N?D3 - E,)/(N(N — 1)) < 0.

It can be shown that the corresponding spectral energy density is flat, except
for a DC-component.



In particular, we see that for a DC-free watermark (Do = 0) with non-zero
energy (E, > 0), the watermark values w(n;) and w(n;),n; # nj cannot be
statistically uncorrelated, because n < 0. *

We will call a watermark generation process ”quasi white and DC-free a.s.”
if Dy = 0 a.s. and its autocorrelation function is

Iy u(A) E,/N ifA=0
w,w =4 N2?D2-E, .
~an A~

In the performance analysis, we will mainly use the statistical correlation
Ry, over the ensemble of watermarks rather than the deterministic I7,,,,. The
behavior of R can be shown to be similar to that of I".

Let’s consider some pixel ng with a non-zero watermark value w(ng) = ko.
This implies that the N — 1 other pixels in the image must compensate for this
through

Z w(ni) - NDO - k‘o

n; €An\no

For a quasi-white watermark generation process, we define Ry, (A1) = Ry, (A2)
=1NRr for Al,Az ;é 0. We find

Efw(n;)|w(ng) = ko] = (N Do — ko)/(N — 1),

so, for A #0,
NDy —
Ry.w(A) = E[E[w(ne)w(ng + A)|[w(ng)]] = E w(no)[?vi_wl(no)]
We get
Ry (A) 5a if A=0
w,w - DS 5 . X
Nyt — vy f A#£0

A 7purely white” watermark generation process requires that the correlation
equals exactly zero except at A = 0, where Ry, ,,(0) = E,,/N. We have seen that
purely white watermarks cannot be absolutely DC free, but have Dy = \/E,,/N

Low pass watermark As an other example, we will treat the case that the
watermark has a low-pass spatial spectrum. This method has been advocated for
instance by Cox et al. [4]. In such situation, a potential attacker can less easily
tamper with the watermark by low-pass filtering. Moreover, JPEG compression
typically removes or distorts high-frequency components. A low-pass watermark
can be generated by spatially filtering a (quasi-) white watermark. Perceptually

* A similar small negative correlation outside the origin (A # 0) is often ascribed to a
peculiarity of maximum-length pseudo-random sequences, as generated by a Linear
Feedback Shift Registers (LFSR). However, the above argument reveals that it is
fundamentally related to the requirement of the DC value. See also [13] and [14].



this appears as a smoothing. A first-order two dimensional IIR spatial smoothing
filter computes [11]

wy(n) = (1 - ﬁ2)2 [wl (n) + fw2(n — e1) + fwz(n — e2) — ﬁ2w2(n — ey — ez)]

from an original w;. It can be shown that in case of a purely white watermark
wy at the input, such a first-order filter generates a new watermark wy with
correlation function [11]

E,
sz,wz = WﬁlA‘

Another method of generating a low pass watermark is to use a pseudo random
{—k, k} generator which gives a statistically dependent output for neighboring
pixels.

IIT Correlator detector

Correlation detectors are interesting to study, for several reasons. They are a
mathematical generalization of the simple but nonetheless important scheme in
which w € {—1,0,4+1}. To discuss this subclass of correlators first, let’s denote
A_={n:whn) = -1} and Ay = {n: w(n) = +1}. Watermarks are detected
by computing the sum of all pixel luminances at locations where the watermark
is negative, i.e., s_ = > _, ¢(n) and the sum of all luminances where the
watermark is positive, i.e., s; = ZneA+ g(n). Then, an expression such as y =
(s4+ —s_)/N is used as a decision variable. See for instance [1], [2] for schemes
that are related or can be shown to be equivalent. From our more general results
to follow it can be concluded that that two aspects have a significant effect on
performance.

[Spatial Correlation] Spatial correlation occurs if the probability that n; € A_
statistically depends on whether n; € A_ for some pair of differing pixel
locations n; # n;. We will see that high spatial correlation substantially
reduces reliability.

[Compensation of DC components in the watermark] If the number of pixels in
sets A_ and A, are generated as binomial random variables such that the
expected value of the number of elements in both sets is identical (EDy = 0,
but the variance of Dy = O(N 1)), the performance is significantly worse
than when the number of elements is always precisely the same (Dg = 0
a.s.). This is in contrast to our intuition that if pixels are put in A_ and Ay
with probability 1/2 and independently of each other, the statistical effect of
a differing number of elements in each class would become negligibly small
for increasing image sizes. Our theoretical and experimental results refute
this belief.

Another reason to address correlators (sometimes called “matched filters”
[12]) is that these are known to be the optimum detector for a typical sit-
uation often encountered in radio communications, namely the Linear Time-
Invariant (LTT), frequency non-dispersive, Additive Gaussian Noise (AWGN)
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Fig. 1. Watermark Embedder and Correlation Detector

channel, when the receiver has full knowledge about the alphabet of waveforms
used to transmit a message. Less ideal situations often are addressed with ap-
propriate modifications of the matched filter.

In a correlator detector, a decision variable y is extracted from the suspect
image ¢(n) according to correlation with a locally stored copy of the watermark
w(n) typically with @w(n) = Cyw(n), where w.l.0.g. we assume the constant Cy
to be unity. The decision variable is y = I'y 4(0), with

Fog(A) = 5 3 dman+ A)

ncAn

Figure 1 illustrates this correlation detector. The model covers all detectors in
which the decision variable is a linear combination of pixel luminance values in
the image. Hence, it is a generalization of many detectors proposed previously. It
covers a broader class of watermarks then the binary (w(n) € {—k, k}) or ternary
(w(n) € {—k,0,k}) watermarks. In particular, it also includes methods in which
the detection in conducted by correlation in the domain of DCT coefficients.

For our analysis, we separate y into a deterministic contribution y,, from the
watermark, plus filtered “noise” from the image y,.

ncAy
Taking a uniform embedding depth 6(n) = 1, we get yp = [pw(0) = E—A}“
Moreover,
1 N
= O impm)

ncAyn

Regarding y,, the mean value is found as the product of the DC component in
the watermark and the image, namely

Byp = B Y imp(n) = - [Bi(n)] Y p(n) = mEDy
neAy nEAN

Note that for a particular watermark with known DC-component, Ey,|Dy =
11 Do. Up to this point, results are irrespective of the correlation in pixels.



The second moment is found as

By} = F H > w(n)p<n>] - @)

ncAn

%E{ Z Z w(n;)p(n;) A(nj)p(nj)}

n;€EAN njEAN

In the above expression it is tempting to assume that cross terms with n; # n;
all become zero or negligibly small for sufficiently large images. However, a DC
component may be present. Furthermore, in the following sections we will show
that for correlated pixels (o > 0) and spectrally non-white watermarks (e.g.,
B > 0) , non-zero cross terms substantially affect the results, even if Dy = 0.
Therefore we will not make this assumption here.

Because of the Central Limit Theorem, y, has a Gaussian distribution if N is
sufficiently large and if the contributions in the sums are sufficiently independent.
The Gaussian behaviour will be verified experimentally in Section IV. If we
apply a threshold y:p, to decide that the watermark is present if y > y:p,, the
probability of a missed detection (the watermark is present in ¢(n), but the
detector thinks it is not; false negative) is

1 w — Ythr + E
P = Zerfedw — Ythr T Tp +
2 \/§pr

where g, is the standard deviation of y,, with o} = Ey, — [Ey,]>. We find

1 E NEDy — N, N.
Py = —erfelw + 0 1 N2 Ythr
2 \/iNo-yp

The presence of Dy and p; in this expression suggest that either the DC-terms
must be appropriately compensated in selecting y:p, or that the suspect image
¢(n) must be preprocessed to subtract the DC-term ;.

Given that no watermark is embedded, a false alarm (false positive) occurs
with probability

1 —E
Pfa = —erfcythr Ip

2 ﬂayp
IT1.1 Example 1: (Quasi-) White and DC-free watermark

The quasi-white and DC-free watermark reasonably models most of the early
proposals for increasing and decreasing the pixel luminance according to a pseudo
random process. Using p(n) = u1 + p(n), one can write

Eyp = piiD§ + 7 Yneay Loamiacay E(@)i(n+ A)pm)p(n + A)]



For an a.s. DC-free watermark, the first term is zero. In the forthcoming
evaluation, the image size IV is considered to be large enough and « is assumed
to be sufficiently smaller than unity to justify ignoring of boundary effects. To
be more precise, we consider Ry, ., (A)I} 5(A) to vanish rapidly enough with
increasing A to allow the following approximation: we consider the sum over A
to cover the entire plane R? even though the size of the image is finite. This
allows us to write

1
O'Zp = EyZQ) = N Z RUJ’w(A)FI;’I;(A)

A€ER?
Thus L Buo? D? 5 N
E — w _ . w
=N T [N—l N2(N—1)][Ua ]

A£0

We use Y- 40 al?l = [(1+a)/(1 —a)]* — 1 to express

E,0?
N(N -1)

Eyf, =

2 [NPDE—Eu] [Lta 2
(2
1—a

NZ(N —1)

The second term becomes negligible for large N. We see that the effect of pixel
correlations is significant only if « is close to unity (little luminance changes) in a
small-size image. If the image is large enough, that is, if N >> [(1+a)/(1—a)]?,
we may approximate
E,o?

N2
Experiments of Section IV confirm that in practical situations this is a reason-
able approximation, provided that the watermark is white. Inserting the value
obtained for the standard deviation o, the error probability becomes

Ey;‘; =S

1 N
Pfa = —erfcﬂ

2 V2E, o

In Figure 2, we consider a DC-free watermark and yip, = f—;\’; which provides
Pg, = Ppgq. In practice one would presumably like to improve Py, at the cost of
P,,4, but this corresponds to a simple horizontal shift of the curve. We plot

1 | By
Pfa:Pmd:§eI‘fC @

versus the watermark-energy-to-image-luminance-variance E,,/o?, expressed in
dB i.e., 10 log,q (Ey/0?).

Defining the watermark-energy-to-image-luminance-variance as E,, /o2, thus
as a signal-to-noise ratio, ensures that the curves and mathematical expressions
become independent of the image size, its average luminance and sample vari-
ance. Moreover it matches common practice in statistical communication theory
where one uses Ej/Np, where Ej is the average energy per bit, and Ny is the
spectral power density of the noise.
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Fig. 2. Watermark detection error rates Py, and P,,4 versus signal-to-noise ratio
E, /o? for correlation detector. Experiments on ”Lenna”: "x”: Dy = 0 "+":
random watermark, independent pixels, DC-free i.m. Solid lines: corresponding
theoretical curves.

For reliable detection E, /o® is much larger than unity, but this does not
imply that the watermark w(n;) in a particular pixel exceeds the luminance
variance. This is similar to spread-spectrum radio where Ey/Ny >> 1 despite
the fact that spectrally spoken the signal power is below the broadband noise
[12].

It appears to be less relevant over how many pixels the watermark energy is
spread as long as the total energy E,, and the image properties (o in particular)
are fixed. However, example I11.2.2 will show that if the watermark energy is
not embedded by a spectrally white watermark, as assumed here, the results are
different and do depend on the watermark ”waveform” used. This is in contrast
to spread-spectrum radio over AWGN channels.

II1.2 Example 2: The effect of a non-zero DC component

This section evaluates the method mentioned in section II.3, I1.4 and III to
generate a watermark by randomly choosing w(n) € {—k,+k} with probability
1/2 independently for every pixel. The resulting w may or may not be filtered by
a two-dimensional first-order filter to created suitable low-pass spatial properties.



Before any such filtering the number of elements in A4 equals N(1 4+ Dy)/2,
which is a binomial random variable with mean N/2 and variance N/4. Thus
D, is zero-mean with variance 1/N.

Intuitively one may believe that if N is large enough, setting a fixed detection
threshold but without specifically compensating for a small random Dy will not
affect the performance of the detector significantly. Here we will prove different
and show that the standard deviation of Dy remains significant for large N and
does not vanish rapidly enough to be negligible. **

We address the ensemble-mean behavior. Averaging over all possible water-
marks generated this way, we get

Bi=am Y Y [Bumu(m+ Apmpn + A)
nEAny A:nt+AcAy

If we ignore boundary effects, i.e., summing over A € R?, we get

1
NiN»

Eyz = Z Ry w(A)p(A)

A€R?

Inserting the previously discussed correlation functions of a low-pass image and
a low-pass watermark, one sees that

E,
Bt = YD He gl 4 ot
AER?

By? = v’ L+af]®  Bupd [1+68]°
PTON2 |[1-ap N2 |[1-p8

and, as we saw before Ey, = p1EDy, so

Eo

> _ Buo® [14+0B]°  Bupd [146]° 500
w= Nz |T—ag| T N® |1=p| ~HMIED]
The two first terms are order O(N 2). For large N, the second term (which
accounts for variations in the DC offset) does not vanish compared to the first
term. This result is somewhat counterintuitive as it shows that the effect of
statistical fluctuations in Dy does not vanish fast enough if the watermark is
laid over more pixels.

In the special case of white watermarks, i.e., for 3 — 0, one would expect
O’zp = E, 0%/ N?. However, it tends to E uz/N? where py = o2+ pu?. To illustrate

y
the consequences of this result, we discuss two different watermark detectors.

** A similar (but less significant) effect of random DC components occurs if a watermark
is built by spatially repeating the same basic small pattern in a large size image and
cutting the watermark near the image boundaries.



IT1.2.1 The first system is designed around the observation that E(y,|watermark)
= E,/N and E(yp|no watermark) = 0, where the expectation includes all
watermarks in the class. For a threshold half-way, i.e., yin, = E,/(2N), the
error rate goes into

1 E,
Py = P = §erfc 3 2
[ )+ ]

I11.2.2 Alternatively, in the second system, the detection threshold is based
on precise knowledge of the watermark including it DC component Dy.
E(yp|watermark, Do) = Ey /N + u1 Dy and p3 Do otherwise. That is, the
threshold is yinr = 1 Do + E/(2N).

1 E, [1— 2
Pro = Ppg = §erfc el { aﬂ]

802 |1+ af
The same performance can be achieved by ¢ = p — p1 instead of with ¢ as

input to the detector. This result reduces to the case of Section IIL.1 for
white watermarks (8 = 0).

We see that the second system outperforms the first one, In experiments, we
found that typically s is about four times larger than 0. Hence, performance is
better by about 5 to 10 dB. In Figure 2 we took 8 = 0. For low-pass watermarks,
the differences would be more pronounced.

IV  Computational and Experimental Results

The use of randomly generated sequences provides watermarks that on the av-
erage may have the desired properties, but without a guarantee that individual
watermarks also accurately possess the desired properties. This would lead to
different results in our analysis and our experiments.

Therefore, in our experiments, we created quasi white and absolutely DC-
free watermarks through appropriate pseudo-random sequences. An appropriate
choice appeared to be binary watermarks, w(n) € {—k,k} with 8 = 0 gen-
erated by a 2-dimensional LFSR maximal length sequence [13] [14] of length
214 —1=(2" - 1)(27" + 1) = 127 - 129, with 127 and 129 being relatively prime.
Such sequences have a negligibly small DC component: since ) w(n) = —1,
we get Do = 1/(2'* — 1). Their spatial correlation function has the appropri-
ate d-function shape. Repetition of the 127 by 129 basic pattern leads to a
periodic correlation function, but maintains virtually zero correlation outside
the peaks. Experiments revealed that effects of cutting off this pattern at non-
integer repetition numbers had negligible effect for the large images that we used
N; =720, N» = 480.

Figure 2 compares the above theoretical results with measurements of the
"Lenna” image. In the figure, we combined the results from one image and
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Fig. 3. Probability density of decision variable y,, for white and low-pass water-
mark on ”Lenna”. Theory: solid lines. Experiments: ” x” white (8 = 0) and ”+”
low-pass (8 = 0.5) watermark.

many watermarks. We computed the components of the decision variable and
estimated which signal-to-noise ratio would be needed to achieve detection just
above the threshold. Any particular image with a particular watermark gives a
step-wise transition in the performance plot, at y,, = 2y,. Combination of this
step for many (more than 10*) watermarks created the smooth curve.

We computed y, by correlating with a normalized reference copy of the wa-
termark w € {—1,4+1}. In such case y,, = k, where k is the embedding depth
of the watermark. We measured y, from the image. To ensure correct detection
for a particular watermark and image, the embedder must choose k£ > 2y, so
Ey = k> N1 N3 > 4y> N1 N,. The shape of the curve confirms the (approximately)
Gaussian behaviour of y,. Other images produced the same curve.

To get consistent results, we had to generate a large set of watermarks fully
independently. If one simply shifts the same watermark to create the set of
test watermarks, correlation of pixels in the image leads to correlated decision
variables. Moreover, shifting a single watermark can not simulate the effect of



a random DC component. This would lead to a significant deviation from the
theoretical curve and to a more stepwise (non-Gaussian) decrease of errors rates
with increasing SNR. We noted that images with higher correlation are more
sensitive to correlations among different watermarks during the experiments.

Figure 3 compares white and low-pass watermarks. Both watermarks have
been generated using a pseudo-random generator to create a white watermark.
For the low-pass watermark, this was then filtered. The experiments confirm the
Gaussian distribution. This result clearly shows that if the watermark is confined
to low-pass components of the image, this significantly affects the reliability of
detection. The standard deviation of the decision variable is larger. In this case,
the random +/- terms in y,, which are due to multiplying the image p with
the locally stored copy of the watermark w, do not cancel as rapidly as these
would vanish for a white watermark. If the watermark contains relatively strong
low-frequency components (large 3), the variance of y,, is stronger and the error
rate is larger.

If the watermark contains relatively strong high-frequency components § ~ 0,
the variance is weaker, so the watermark sees less interference from the image
itself. However, such high-frequency watermark is more vulnerable to erasure by
image processing, such as low-pass filtering (smoothing).

V Conclusions

In this paper, we presented a mathematical framework to model the detection
of electronic watermarks embedded in digital images, in particular for correlator
detectors or matched filters. Several essential differences appear with the theory
of (radio) transmission over a linear time-invariant channel with AWGN. Our
model predicts reliability performance (missed detection and false alarms). In
some special cases, particularly that of a white watermark, the signal-to-noise
ratio (watermark-to-content-energy) appears the only factor to influence the
reliability of detection. This leads to expressions for error probabilities similar
to those experienced in radio communication (e.g. error function of square root
of signal-to-noise ratio) However, the spectral properties of the watermark have
a significant influence.

If a watermark detector is part of a standardized active copy control system,
false alarms are a critical performance parameter. We believe that the analysis
of this paper has provided enhanced insight in the rate at which these errors
occur.
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