Derivation of the equations
The mutual information can be calculated as,

$$
\begin{equation*}
I(W ; S)=H(S)-H(S \mid W)=H(S)-\sum P(w) \cdot H(S \mid W=w)=H(S)-\int_{-q}^{q} f_{w}(w) \cdot H(S \mid W=w) d w \tag{1}
\end{equation*}
$$

with

$$
\begin{align*}
H(S \mid W=w) & =\sum_{s_{i} \in S} P\left(s_{i} \mid w\right) \log \frac{1}{P\left(s_{i} \mid w\right)} \tag{2}\\
& =P(S=1 \mid W=w) \log \frac{1}{P(S=1 \mid W=w)}+P(S=0 \mid W=w) \log \frac{1}{P(S=0 \mid W=w)}
\end{align*}
$$

We have $p_{w 0}=P(S=0 \mid W=w)$ and $p_{w 1}=P(S=1 \mid W=w)$. Therefore,
$H(S \mid W=w)=-\left(p_{w 1} \log p_{w 1}+p_{w 0} \log p_{w 0}\right)$
Substituting (2) and (3) into (1), it gives,

$$
\begin{aligned}
I(W ; S) & =H(S)+\int_{-q}^{q}\left(p_{w 1} \log p_{w 1}+p_{w 0} \log p_{w 0}\right) f_{w}(w) d w \\
& =H(S)+\int_{-q}^{q}\left(p_{w 1} \log p_{w 1}+p_{w 0} \log \left(1-p_{w 1}\right)\right) f_{w}(w) d w
\end{aligned}
$$

(Instead of $I(W ; S)=H(S)+\int_{-q}^{q}\left(p_{w 1} \log p_{w 1}+p_{w 0} \log \left(1-p_{w 0}\right)\right) f_{w}(w) d w$ given in the paper).
I think the paper has a typo, for this result is in accord with equations presented in its rest part.

