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Abstract. This paper summarizes considerations and rationales for the design of
a watermark detector. In particular, we relate watermark detection to the problem
of signal detection in the presence of (structured) noise. The paper builds on
the mathematical results from several previously published papers (by our own
research group or by others) to verify and support our discussion. In an attempt
to unify the theoretical analysis of watermarking schemes, we propose several
extensions which clarify the interrelations between the various schemes.
New results include the matched filter with whitening, where we consider the
effect of the image and watermark spectra and imperfect setting of filter coef-
ficients. The paper reflects our practical experience in developing watermarking
systems for DVD copy protection and broadcast monitoring. The aim of this pa-
per is to further develop the insight in the performance of watermark detectors, to
discuss appropriate models for their analysis and to provide an intuitive rationale
for making design choices for a watermark detector.

1 Introduction

The understanding of reliable methods to detect embedded data or watermarks has pro-
gressed substantially over the past years. Many of the first proposals for watermarking
emerged from the image processing community. It was also recognized that detection
theory and spread-spectrum communication have several aspects in common with wa-
termark detection, and results from these fields are now also exploited to improve the
detection performance. This paper reviews the relation with detection theory and de-
velops an intuitive understanding of the behavior of various approaches to watermark
detection. It is not intended as ahow to recipe, but rather as an attempt towards the
development of a better understanding and a unified and more rigid theoretical model-
ing of watermark detection. Hitherto, several detection principles have been proposed
and verified experimentally, but theoretical support often was meagre. Our discussion
mostly refers to theoretical models, rather than to experiments. Nonetheless most of
the models have been verified by experiments reported in previous publications. New
results are obtained to further verify and illustrate detection performance. Our exper-
iments have been conducted during the development of watermarking systems, both
for a consumer electronics application, viz., the JAWS system [?] [?] proposed by the
Millennium Group as a solution to DVD copy protection[?], and for a professional ap-
plication, viz., the VIVA system for automated monitoring of advertisements and news



clips in television broadcasts [?]. In this paper, we address a large and important class
of watermarks in which a pseudo-noise pattern is added to the luminance of the im-
age pixels. This watermarking technique may involve adaptive embedding, based on
perceptual masking models [?].

We are most concerned with the application ofembedded signaling, i.e., of carrying
additional data along with images or video. The three prime optimization criteria are
low perceptibility, cost (intemately related to complexity), and robustness against com-
mon processing operations [?]. Robustness against intentional attempts to remove the
watermark, and confidentiality in covert communication (hiding the fact that additional
data is embedded) are of secondary importance. We do not specifically address the tem-
poral aspect of motion pictures, so our results apply to images as well as to video. It
has been shown that a watermark embedder can exploit its knowledge about the image.
This leads to the modeling of a communication channel with side information at the
transmitter [?]. Our paper (which primarily focusses on detection) ignores this aspect.

The outline of the paper is as follows. Section 2 formulates a watermarking model
and defines parameters that we will use in our discussions in Section refsec:3. The sub-
sections of Section 3 address specific watermark detectors or refinements of these. Our
discussion progresses from very basic schemes, such as the correlator in Section 3.1,
and develops further sophistications step by step. Section 3.2 discusses some important
ingredients of the correlator concept, in particular the size of the watermark alphabet.
Section 3.3 addresses non-stationarity in the image. It justifies Wiener filtering on the-
oretical grounds, but finds that under slightly different assumptions for the embedding
process, another adaptive filtering is preferable. The model in Section 3.4 addresses
spectral prefiltering, but finds shortcomings in some implementations, which can be re-
solved by the whitening filter of Section 3.5. Section 3.6 provides a frequency-domain
interpretation of the whitened matched filter. It extends the classic discussion of whether
one should mark the perceptually relevant or irrelevant areas of the image. This section
also relates the effect of MPEG compression to the theory of quantization and dither-
ing. Section 3.7 discusses phase-only matched filtering and relates this to the theoretical
model of Section 3.3. Section 3.8 discusses the problem of threshold setting. Section??
supports the discussion of Section 3 by a mathematical analysis. It provides a derivation
of new results for watermark detecting with imperfect prefiltering. Section??concludes
the paper.

2 Preliminaries

We consider two stochastic processes:W generates watermarksW andP generates
imagesP. Processed images, derived fromP will be denoted asQ andR. The water-
mark is seen as a random process because it is created from a pseudo-random sequence
generator, which is fed by a randomseed. We want our system performance to be suf-
ficiently independent of the choice of this seed. Earlier analysis has shown that this
can be ensured if certain restrictions are imposed on the sequence generation process.
DC-freeness is one such requirement [?].

The image and its watermark have a size ofN1 by N2 pixels with a total ofN =
N1N2 pixels. The intensity level (calledluminance) of the pixel with coordinatesEn =



(n1, n2), (0 ≤ n1 ≤ N1 − 1,0 ≤ n2 ≤ N2 − 1) for imageP (upper case!) is denoted
as p(En) (lower case!). The set of all pixel coordinates is denoted asA. We restrict our
discussion to gray scale images in whichp(En) takes on real or integer values in a certain
interval. Whenever convenient we will representp(En) as az-expressionp(Ez) defined by

p(Ez) =
∑
En∈A

p(En)z−En =
∑
En∈A

p(En)z−n1
1 z−n2

2 . (1)

2.1 Image Model

In some (but not all) analyses, we will make the simplification that the stochastic pro-
cessesW andP are wide-sense stationary (WSS) and ergodic [?]. By ergodicity we are
allowed to approximate the statisticalk-th momentµk(p) by the spatialk-th moment
mk(p), viz.,

µk(p) = E[pk(En)] = mk(p) = 1

N

∑
En∈A

pk(En). (2)

WSS means that the statistical autocorrelation function0p,p(En, Em) only depends on
the difference vectorE1 = (11,12) = (En − Em). That is,

0p,p(n,m) = E[p(En)p( Em)] = Cp,p(1) = 1

N

∑
En

p(En)p(En + E1). (3)

A simple model for images is the first-order separable autocorrelation function [?]

Cp,p( E1) = m2
1(p)+ σ 2

pα
| E1|, (4)

where| E1| = |11| + |12|. The standard deviationsp is defined asσ 2
p = m2(p) −

m2
1(p). The quantitiesm1(p) andm2(p) are referred to as theDC-componentand the

powerof the imagep, respectively. The valueα reflects the correlation between adja-
cent pixels in the image. In other parts of the discussion we refine the WSS, ergodicity
and autocorrelation models by assuming that these properties only apply locally.

We denotep̃(En) as the DC-free component of the image, that isp̃(En) = p(En) −
m1(p), so

Cp̃ p̃( E1) = σ 2
p̃α
| E1|. (5)

To avoid problems discussed elsewhere [?], we will assume that in the watermark
detector all signals have been processed by subtracting the DC-component such that
p̃ = p, or, equivalentlym1(p) = 0.



2.2 Watermark Model

A watermarkw(En) is modeled as a sample drawn from the stochastic processW . The
energyin a watermarkw equalsNCw,w(0) = Nm2(w) and is denoted asEw. Similarly
as in the case of images we assume thatw is DC-free, i.e.w̃ = w. White watermarks
have a spatial autocorrelation function which approaches the discrete Dirac distribution
when the image size is large enough: Cw,w( E1) = N−1Ewδ( E1).

Our method of creating alow-pass watermarkis by spatially filtering a white wa-
termark sourceW with a first-order two dimensional spatial smoothing IIR filterSβ(En),

Sβ(Ez) = 1− β2

(1− βz−1
1 )(1− βz−1

2 )
. (6)

In this case the autocorrelation becomes:

Cww(1) = Ew
N
β |1|. (7)

The watermark is embedded according to

r(En) = p(En)+ φ(En)w(En), (8)

whereφ(En), (φ(En) > 0) denotes a local embedding depth, which adaptively de-
pends on a local neighborhood ofEn. Mostly, a global embedding depth condition guar-
antees thatm2(φw) ≈ m2(φ)m2(w) equalsEw/N , thusm2(φ) = 1.

3 Discussion

Several early papers [?] [?] [?] propose a watermarking system which is equivalent to
increasing the luminance of one set of pixels in the image by one quantization step, and
decreasing it by one quantization step in a second set of pixels. The number of elements
in both sets was taken equal. Thus,w ∈ {−1,0,+1}. We denoteA− = {En : w(En) =
−1} andA+ = {En : w(En) = +1}. Here,A+ ∩ A− = ∅ andA+ ∪ A− ⊆ A. Watermarks
are detected by computing the sum of all pixel luminance values at locations where
the watermark is negative, i.e.,s− =

∑
En∈A− r(En) and the sum of all luminance values

where the watermark is positive, i.e.,s+ =
∑
En∈A+ r(En). Then, an expression such as

d = (s+ − s−)/N is used as a decision variable. This scheme was later improved and
the underlying model generalized to include

– adaptive embedding, to exploit masking properties of the image,
– real-valued watermarksw,
– embedding in different domain such as the DCT transform domain
– methods to exploit correlation in image pixels to improve the detector performance



3.1 Generalization to correlation

The detector of the previous subsection is a special case of acorrelator detectoror
matched filter[?]. In a correlator detector, a decision variabled is extracted from the
suspect imageR = {r(En)} = P+W according to correlation with a locally stored copy
of a (not necessarily equal) watermarkŵ(En), so

d = Cŵ,r (0) = 1

N

∑
En
ŵ(En)r(En) = dp + dw. (9)

Here the watermark contributiondw equalsdw = Cŵ,w(0) if the watermark is
present anddw = 0 otherwise. The image contributiondp = Cŵ,p(0) is a zero-mean
projectionof the imagep on the watermark̂w. Its variance determines the amount of
noise or interference to the watermark.

Ignoring some subtleties, the matched filter theorem [?] can be summarized as
the statement that̂w(En) = w(En) is the optimum choice for the local copŷw. Impor-
tant assumptions are that the watermark signal (and its location or phase) are known
and that the noise is additive, white and Gaussian. Under these conditions the deci-
sion variabled has the best achievable signal to noise ratio SNR, which is defined as
g = m2(dw)/m2(dp). Also, onced is known, no other properties can be extracted from
R that would further improve the detector reliability.

The white noise assumption is equivalent to assuming that pixels in an image have
random luminance values, independent from pixel to pixel. This may not model real-
world images very well, but the matched filter theory also provides a foundation for
further improvement, in casu thewhitened matched filterwhich we will address later.

The Gaussian assumption may also lack realism, but up to now we have not found
any paper in open literature which describes how to exploit the precise probability dis-
tribution of image luminance values to enhance detector reliability. Experiments, e.g.
[?][?], confirmed that after accumulation of many pixels,dp(w) has a Gaussian distri-
bution if N is sufficiently large and if the contributions to the summing are sufficiently
independent. In [?] the model for the tails of the distribution is refined, leading to the
conclusion that the Gaussian assumption for correlation values leads to pessimistic pre-
dictions for false positives.

3.2 Corollary

The concept of the matched filter directly suggests how to handle watermarks which
draww-values from a larger alphabet than{−1,0,+1}. The matched filter detector
multiplies every pixel of the suspect image with the luminance value of the reference
watermark,ŵ = w. Thus, the detector should weigh most heavily the pixels (or fre-
quencies) in which most watermark energy has been put, in fact, the best weighing is
proportionally to the strength of the watermark. The use of a multi-valued watermark
has several advantages.

– It is stronger against specific attacks, such as collusion attacks [?] or the histogram
attack [?].



– Moreover, it is useful to have real-valued watermarks (or a discrete alphabet of
sufficient size) when adaptive embedding is used. If the pixel modificationφw is
quantized and ifw only has binary values (+1, -1), undesired discontinuities may
occur. In such case, the effect of a carefully calculatedφ is reduced to a crude
switching of the watermark level. Boundaries may be particularly disturbing to the
human eye.

– Real-valued watermarks occur naturally if the watermark is defined in one domain
(e.g. spatial domain) but detected in another domain (e.g. JPEG or MPEG DCT
coefficients).

Another observation is that detection based on correlation is equivalent to extract-
ing a decision variable which is a linear combination of pixel luminance values. Hence
correlation can be performed in any transform domain for which energy preservation is
guaranteed. It can be calculated for instance in pixel domain, in an image-wide DCT,
block-based DCT or FFT. While several embedding methods have been based on mod-
ifying MPEG or JPEG DCT coefficients, such watermarks can also be detected by cor-
relation in the spatial domain, or vice versa. Domain transforms can further be used to
speed up the correlation calculation or as a computationally efficient manner to search
for watermarks in altered (e.g. shifted) images [?].

An aspect relevant to the complexity of the detector, is the ability to usetiling [?].
This is a method of spatially repeating a watermark pattern of sizeM1 by M2 with
M1 < N1,M2 < N2 in the image, according to

r(En) = p(En)+ φ(En)w(n1modM1, n2modM2). (10)

Since correlation is linear, i.e.,Cp+q,w = Cp,w+Cq,w, the computational speed de-
tection can be improved by a factorN1N2/(M1M2) by cyclically wrapping the suspect
image to one of sizeM1M2, on which correlation is then performed [?].

3.3 Exploiting non-stationarity

Most watermarks are embedded with an adaptive depthφ which depends on the mask-
ing properties of the image. Ideally the detector should take this into account. This
section presents an optimum method for this. Let’s assume that the image can be par-
titioned into I sub-imagesA0, A1, .., Ai , .. AI−1, with N0, N1, .. ,Ni , .., NI−1 pixels,
respectively, with

∑
I Ni = N . Each sub-imageAi has its own varianceσ 2

p,i , autocorre-
lationαi , and masking propertiesφi , which are constant withinAi . In practice, feature
extraction algorithms may be used to partitionA 1. The problem of optimal detection
relates todiversity [?] radio reception, a system which combines signals received by
multiple antennas. Borrowing from this theory, one can extractI decision variables
d0, d1, ..dI−1, defined as

1 We will use later that this partitioning is not particular to the spatial domain, but may also
occur in frequency domain.



di = 1

Ni

∑
En∈Ai

r(En)ŵ(En) = di,w + di,p. (11)

Here di,w = N−1
i

∑
En∈Ai

φ(En)w(En)ŵ(En) = φi N−1
i

∑
En∈Ai

w(En)ŵ(En) and di,p =
N−1

i

∑
En∈Ai

p(En)ŵ(En). We defineEi,w =
∑
w2(En), so if ŵ = w, di,w = φi N−1

i Ei,w.
Section 3.8 describes how to estimate the varianceσ 2

i,p = m2(di,p) in a practical detec-
tor. In the case that the local copŷw is white Gaussian noise, it not hard to show that
sigma2

i,p is proportional to the variance of the pixel datam2(p).
A single decision variable can be combined from

d =
I−1∑
i=0

di fi . (12)

Using Cauchy’s inequality, the selection of the weigh factorfi can be optimized for
optimal SNR as follows,

g = {
∑I−1

i=0 di,w fi }2∑I−1
i=0 σ

2
i,p f 2

i

≤
∑I−1

i=0 d2
i,wσ

−2
i,p

∑I−1
i=0 σ

2
i,p f 2

i∑I−1
i=0 σ

2
i,p f 2

i

(13)

=
I−1∑
i=0

d2
i,w

σ 2
i,p

=
I−1∑
i=0

φ2
i E2

i,w

N2
i σ

2
i,p

=
I−1∑
i=0

φ2
i

σ 2
i,p

,

where we assume (without loss of generality) thatEi,w/Ni = 1. Equality holds if

fi = di,w

σ 2
i,p

= φi Ei,w

Niσ
2
i,p

= φ

σ 2
i,p

. (14)

Next we will consider two special cases of this result. These special cases can be
shown to be approximately equivalent to a previously proposed detection methods.

The first case is that of an embedder using white Gaussian noise as a watermark
pattern, withφi ≈ σi,p. This approximates a typical embedder which assumes that the
perceptivity of a watermark is related to the standard deviationσi,p in the pixel lumi-
nance. Inserting this into the formula for optimum weighing of the subimage decision
variables fi , we find fi = Ei,wσ

−1
i,p as the optimal choice. We will use this in our dis-

cussion of phase-only matched filtering in Section 3.7.
The second case is fixed-depth embedding, i.e.,φi = constant. Our generic formula

Equation 14 proposes that a detector should weighfi = σ−2
i,p . Intuitively we explain

this as follows: one division byσi,p makes the noise power identical for all pixels, the
second division weighs pixels proportionally to their strength. Radio engineers call the
latter weighingmaximum ratio combining[?]. This special case relates to extracting a
Wiener filtered copy from the suspect imageR = Q − Wiener(Q), proposed in [?],
which corresponds to



fi = 1− Niσ
2
i,p

Niσ
2
i,p + Ei,w

(15)

Since one can approximate this as

fi ≈ Ei,w

Niσ
2
i,p

, (16)

we can now provide a justification for the use of wiener filtering on theorectical
grounds. We refer to [?] for a quantification of the improvement gains. Also, [?] de-
velops a model for the impact of adaptive filtering, though it was used as an attack to
minimize Cw,r by R = Wiener(Q).

3.4 Prefiltering

In this section we consider watermark detection when correlation is preceded by fil-
tering of the image. In the following sections we will also consider prefiltering of the
watermark. When an image is linearly filtered, a new imageR is created in which each
pixel luminance is a combination of pixel luminance values in the original imageQ.
Most filters operate locally, thus combining pixels in the neighborhood (smallE1) of the
pixel that is created in the new image, according to the convolution

R =
∑
E1

h( E1)Q(En + E1), (17)

Hereh( E1) are the filter coefficients of afilter H . Reffering to Figure 1, this role is
conducted by filterH1, R = H1(Q), for the image and by filterH2 for the watermark,
Ŵ = H2(W ).

H Σ

H

dRQ

W

W

+
P

W

wφ

Perceptual 
model

CorrelatorAdder

1

2

Fig. 1. Embedder and Correlator detector with prefiltering

When a correlation detector is preceded by filtering, the SNR in the decision vari-
able differs from the result for an unfiltered image [?] [?] [?] [?]. For linear prefiltering



it is not difficult to show that the situation of Figure 1 is equivalent to correlation with
W on the image(H ∗2 H1)(R), whereH ∗2 denotes the time-inverse of the filterH2.

An edge-enhancement filter [?] or median filter [?] filter can be used to predict the
image in pixeln from the neighbouring pixels. This prediction is extracted from the
actual luminance, according toR = H2(Q) = Q− Pre(Q), wherePre() denotes pre-
filtering. This exploits the redundancy in the pixels of the video. These filters reduce
m2(dp), the variance of the noise, and were shown to give a performance improvement.
However these do not necessarily also maximize E[dw] or the signal to noise ratio.
Optimization of the SNRg leads to thewhitened matched filter.

3.5 Whitening Prefilter

For non-white noise, one can first prefilter the suspect imageQ into R, such that its
frequency spectrum is sufficiently white (see Figure 2. Subsequently, a matched filter
61 is used forR = H1(Q). Readers who are familiar with information theory (e.g. [?])
may wish to skip the next paragraph, which sketches the proof by contradiction to see
that this detector is optimum.

If the prefilterH1 is invertible,R = H1(Q) andQ intrinsically carry the same infor-
mation, so optimum detectors forR and Q must have the same reliability. Let62(Q)
be a fictitious detector which detects watermarks inQ more reliably thanH1(61(Q)),
i.e., the concatenation of61 and H1 executed onQ. Then, for imagesR (with white
noise), the detector62(H

−1
1 (R)) would outperform61(R). This is at odds with the

the matched filter theorem that61(R) is optimum forR. So,H−1
1 (62)) cannot outper-

form 61. This implies that62(Q) = 62(H
−1
1 (H1((Q))) cannot perform better than

61(H1(Q)). Thus,61(H1(Q)) must be optimum

H RQ

W = H (W)

Σ
Matched Filter

1 1

H

Hypotetical Optimal Filter

1

2

-1

Σ

11

2ΣQ’

Fig. 2.Whitening Matched FilterH1 and61, and fictitious better detector62



Whitening can be interpreted as a form of (high-pass) prefiltering before correlation.
The whitened matched filter differs from the prefilter concept of he previous section in
the sense that not only the suspect image but also the locally stored reference watermark
is filtered (Ŵ = H1(W )). In fact in Figure 2,61 is a matched filter forR, where the
watermark component inR is H1(W ).

Implementation-wise we observe that the correlator, the correlator with prefiltering,
and the whitened matched filter all create a decision variable which is alinear com-
bination of the pixel luminance values. Thus, any of these can be implemented just as
correlator, without any prefiltering. In other words, using the implementation of Fig-
ure 1, the detector does not have to execute filtering operartionsH1 andH2 in real-time.
Both H1 andH2 can be incorporated in a precomputedŴ . We refer to Section?? for
an analysis of the perforamance and the sensitivity to the accuracy of the filter setting.
Experiments with whitening are reported in [?].
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3.6 Frequency Components

The whitening concept throws new light on the discussion whether the watermark
should be located in perceptually relevant or irrelevant areas (or frequency components)
of the image. Whitening enhances high frequency components, which are relatively
weak in a typical image. Whitening weakens the low frequency components, which are
strong in a typical image. Thus these prefiltering methods tend to weigh high frequency
components more heavily in the decision variable than low frequency components. The
intuition behind it is that at low frequencies, the image itself causes stronger interfer-
ence to the watermark than at higher frequencies.

A limitation of these models is that they not model typical distortion by MPEG or
JPEG very well. In a first order approximation, these techniques can be interpreted to
crudely quantize the medium to high-frequency components, and remove (i.e., quantize
to zero) the upper higher frequencies. For the medium to upper frequencies, the water-
mark may not be affected so dramatically, because typically the imagedithers[?] [?]
the watermark. Dithering is illustrated in Figure 4.
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RW +
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Quantizer

Embedder
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Fig. 4. Watermark embedding and lossy compression interpreted as a dithering system on water-
marks.

Dithering can ensure that the errorE = R−W is statistically uncorrelated with the
watermarkW , i.e., Cw,e = 0 [?]. It follows the that the expected decision variable of
the watermark detector becomes, forŴ = W ,

E[d] = Cw,R = Cw,w+e = Cw,w + Cw,e = Cw,w = E[dw] (18)

That is, afterdithering by the image, compression or quantization does not affect
the correlation performance compared to a system without the quantizer.

On the other hand, for the upper highest frequencies the dithering effect is lost2

and the watermark components in these frequencies do not contribute todw [?]. As
these frequencies may nonetheless contain noise, the detector must avoid to excessively
weigh upper high frequencies in the correlation. This requires a modification toŴ or
H2 in Figure 1.

3.7 Phase Only Matched Filtering

A refinement of the whitened matched filter is to adaptively whiten the spectrum of the
incoming video. Instead of using a fixedH1, the detector calculates an FFT ofQ, and
sets amplitudes to unity at all frequencies, thereby preserving only phase information
[?].

This idea agrees with the result in Section 3.3. The rationale is that the watermark
is only a small perturbation of the luminance. We partition the image intoI spectral
components. Even if it has been watermarked the suspect image gives a good estimate
of the spectral componentsσi of P. It turns out that it is reasonable to assume that the
embedding depth is likely to be more or less proportional toσ : even if this is not the case

2 Formally speaking, the probability density of the amplitude of the image components do not
satisfy the particular relation to the quantization step size as it was derived in [?]



for freshly watermarked content, this is almost always true after common processing
(JPEG, MPEG). Using the results of Section 3.3, the weigh factor is found asfi =
φi Ei,w/σ

2
i,p, i.e. fi = Ei,w/σi,p which corresponds to phase-only filtering. We refer to

[?] for an analysis of the performance of the phase only matched filter.

3.8 Adaptive Threshold Setting

Up to this point we have primarily described the extraction of a real-valued decision
variable. Next we will discuss the extraction of a hardwatermark present - not present
decision. Detection theory suggests that a threshold can be used, and almost all practical
systems use this method. A suspect signal (or an extracted set of features) is correlated
with some pattern to obtain a correlation value. If this value is larger than a signal-
dependent threshold then the watermark is said to be present. Otherwise the watermark
is said to be absent. The setting of the threshold determines the trade-off between the
false negative and the robustness to image processing.3.

Only if non-adaptive embedding is used and the image is not modified the detector
can exploit thatdw = Ew. In practice, the valuedw is not known exactly to the de-
tector, because the algorithm for adaptive embedding may not be known or can not be
repeated in the detector. Also, minor shifts and scaling of the image severely affects the
value ofdw [?]. Moreover MPEG compression, or other processing may affect the high
frequency components of the watermark in the image.

This makes the determination of the false negative rate problematic, unless extensive
statistical assumptions are made about the processing that is likely to affect the image.
An appropriate design approach is to determine a required false positive rate and to set
the threshold accordingly. The problem of guaranteeing a certain false negative rate,
i.e., how to makeφ, or more precisely the correlationCŵ,MPEG(φw) large enough, then
becomes mostly an embedding issue.

Various authors observed thatdp is in good approximation a Gaussian random vari-
able [?] [?] [?] [?]. The ratio of the threshold setting overm2(dp) determines the false
positive rate, according to

Pf p = erfc

√
d2

thr

m2(dp)

Sincem2(dp) significantly differs from image to image, it appeares useful to estimate
m2(dp) from the image. A practical solution is to use decision variables gathered during
a search for shifts of the image [?]. For all attempts in the search that failed,dw ≈ 0 so
d ≈ dp. One can set the threshold level according to

d2
thr = m2(dp){erfc−1(Pf p)}2

where erfc−1 is the inverted error function. This operation is mathematically equivalent
to the concept of normalized correlation [?].

3 Traditionally, the false alarm probability versus missed detection probability are compared.
However, the watermark embedder has full knowledge about the original image, thus is it can
ensure detection. The threshold setting determines what modifications can be tolerated.
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4 Error Performance for Whitening

This section presents a theoretical study of the whitened matched filter. We consider
a low-pass watermarkW , which is generated by spatially filtering a white watermark
V with a first-order two dimensional spatial smoothing IIR filterSβ(Ez), We further
consider a low-pass imageP, which is generated by spatially filtering a white imageS
with a first-order two dimensional spatial smoothing IIR filterSα(Ez). After watermark
embedding, the image is denotedQ = P + W . We apply a first orderwhitening filter
at the input of the correlation receiver. This filter aims at transforming the non-white
input signal of the receiverQ to a signal with a constant power spectrum. As shown in
Section III, also the watermark has to be filtered in the same way. In order to keep the
model as general as possible, we use the filterGα(Ez) = S−1

γ (Ez) as whitening filter.
In the correlator detector, a decision variabled is extracted by correlating the filtered

received imageQ with a filtered locally stored copy of the watermarkW , i.e. d =
dp + dw, where

dp = 1

N
[Sα(Ez−1)S−1

γ (Ez−1)S(Ez−1)Sβ(Ez)S−1
γ (Ez)V (Ez)]0,

and

dw = 1

N
[Sβ(Ez−1)S−1

γ (Ez−1)V (Ez−1)Sβ(Ez)S−1
γ (Ez)V (Ez)]0.

We introduce:

Tα(Ez) = Sα(Ez)Sα(Ez−1).

Using results from the previous sections, the error probability is given by

P = 1

2
erfc

(
E[dw]

2
√

2σdp

)
,

with

E[dw] = 1

N
[
Tβ(Ez)
Tγ (Ez) ]0Ew

= Ew
N

[
1+ γ 2 − 2αβ

1− γ 2
]2.



For the variance we find

σ 2
dp
= 1

N2
E[[Sα(Ez−1)Sβ(Ez)T−1

γ (Ez)S(Ez−1)V (Ez)]0]
2,

= σ 2
p Ew

N2
[
Tα(Ez)Tβ(Ez)

Tγ (Ez)2 ]0

= σ 2
p Ew

N2
[
(1+ αβ)(γ 4+ 2γ 2(2− αβ)+ 1)− 2(α + β)(2γ 3− (α + β)γ 2+ 2γ )

(1− γ 2)2(1− αβ) ]2

Inserting these results in the formula for the error rate gives

P = 1

2
erfc

(√
Ew
8σ 2

p

(1+ γ 2 − 2βγ )2(1− αβ)
(1+ αβ)(γ 4+ 2γ 2(2− αβ)+ 1)− 2(α + β)(2γ 2− (α + β)γ + 2)

)
,

It should be noted that in the case the whitening filter exactly matches the the received
image, i.e.α = γ the above expression reduces to

P = 1

2
erfc

(√
Ew
8σ 2

p

(1+ α2 − 2αβ)

1− α2

)
.

For a white imageα = 0 we find again the result

P = 1

2
erfc

√
Ew
8σ 2

p

.

In the case of a white watermark, i.e.β = 0, the expression for the error rate becomes

P = 1

2
erfc

(√
Ew
8σ 2

p

(1+ γ 2)2

(γ 4+ 4γ 2+ 1− 2αγ (2γ 2− αγ + 2)

)
.

This reduces further to

P = 1

2
erfc

(√
Ew
8σ 2

p

1+ α2

1− α2

)
.

in the case of perfect whitening:α = γ .

5 Conclusions

We have reviewed various recently proposed watermark detection methods from a de-
tection theory point of view. It appeared that many improvements which have been
found from experiments can be explained by extending methods and theories known
from communications. These considerations have been a reference for our design of
two watermarking systems, which have been demonstrated and evaluated in practical
applications [?].



Earlier publications confirmed that the use of crude statistical models for images can
be useful to create some basic understanding of typical detectors. Here we summarized
such results and compiled a consistent intuition for the effect of various sophistications
of watermark detectors.

As the models used here have a relatively large scope, we not only justified detector
refinements proposed in previous papers, but also found limitations and possibilities for
further improvements.

New mathematical results of the effect of imperfect whitening showed that the ac-
curacy with which prefiltering is performed only has a minor effect on the reliability of
the detector.

We must leave several aspects for further investigation, such as a comparison of the
performance of fixed prefilters (or fixed whiteners) with phase-only matched filtering.

References

1. T. Kalker, G. Depovere, J. Haitsma, M.J. Maes, “A video watermarking system for broad-
cast monitoring”, Proceedings of SPIE, Security and Watermarking of Multimedia Content,
Volume 3657, pp. 103–112, 1999.

2. J.P.M.G. Linnartz, “The ticket concept for copy control based on embedded signalling”, ES-
ORICS ’98, 5th. European Symposium on research in Computer Security, Louvain-La-Neuve,
September 1998, Lecture Notes in Computer Science, 1485, Springer, pp. 257-274.

3. J. Bloom, I.J. Cox, A.A.C. Kalker, J.P.M.G. Linnartz, Math Miller and B. Traw, “Copy Protec-
tion for DVD”, IEEE Proceedings, Special issue on Information and Protection of Multimedia
Information, July 1999, Vol. 87, No. 7, pp. 1267-1266.

4. I. J. Cox, M. L. Miller, “A review of watermarking and the importance of perceptual model-
ing”, Proc. of Electronic Imaging 97, Feb. 1997.

5. I.J. Cox and J.P.M.G. Linnartz, “Some general methods for tampering with watermarks”, IEEE
Journ. of Sel. Areas in Comm., Vol. 16. No. 4, May 1998, pp. 587-593.

6. I.J. Cox, M.L. Miller, and A.L. McKellips. “Watermarking as communications with side in-
formation”, IEEE Proc., Vol. 87, No. 7, pp. 1127-1141.

7. J.P.M.G. Linnartz, A.C.C. Kalker, and G.F. Depovere, “Modelling the false-alarm and missed
detection rate for electronic watermarks”. Workshop on Information Hiding, Portland, OR,
15-17 April, 1998. Springer Lecture Notes on Computer Science, No. 1525, pp. 258-272, pp.
329-343.

8. J.P.M.G. Linnartz, A.C.C. Kalker, G.F. Depovere and R. Beuker, “A reliability model for de-
tection of electronic watermarks in digital images”, Benelux Symposium on Communication
Theory, Enschede, October 1997, pp. 202-209.

9. N.S. Jayant and P. Noll., “Digital Coding of waveforms”, Prentice Hall, 1984.
10. I. Pitas, T. Kaskalis, “Signature Casting on Digital Images”, Proceedings IEEE Workshop on

Nonlinear Signal and Image Processing, Neos Marmaras, June 1995.
11. W. Bender, D. Gruhl, N. Morimoto and A. Lu, “Techniques for data hiding”, IBM Systems

Journal, Vol. 35. No. 3/4 1996.
12. W. Bender, D. Gruhl, N. Morimoto, “Techniques for Data Hiding”, Proceedings of the SPIE,

2420:40, San Jose CA, USA, February 1995.
13. I. Cox, J. Kilian, T. Leighton and T. Shamoon, ”A secure, robust watermark for multimedia”,

in Proc. Workshop on Information Hiding, Univ. of Cambridge, U.K., May 30 - June 1, 1996,
pp. 175-190

14. J. Wozencraft and I. Jacobs, “Principles of Communication Engineering”, Wiley, 1965.



15. M. L. Miller and J. A. Bloom, “Computing the probability of false watermark detection”, in
Proc. Workshop on Information Hiding 99, Dresden.

16. I. Cox, J. Kilian, T. Leighton and T. Shamoon, “A secure, robust watermark for multimedia”,
in Proc. Workshop on Information Hiding, Univ. of Cambridge, U.K., May 30 - June 1, 1996,
pp. 175-190.

17. M. Maes, “Twin peaks: the histogram attack on fized depth watermarks”, Workshop on In-
formation Hiding, Portland, OR, 15-17 April, 1998. Springer Lecture Notes on Computer
Science, No. 1525, pp. 290-305.

18. “Wireless Communication, The Interactive MultiMedia CD ROM”, Baltzer Science Publish-
ers, Amsterdam, 3rd Edition, 1999, http://www.baltzer.nl/wirelesscd.

19. L.M. Marvel, C.G. Boncelet, C.T. Retter, “Reliable blind information hiding for images”,
Workshop on Information Hiding, Portland, OR, 15-17 April, 1998. Springer Lecture Notes
on Computer Science, No. 1525, pp. 48-61.

20. J.R. Hernandez, F. Perez-Gonzalez, J.M. Rodriguez and G. Nieto, “Performance analysius
of a 2D Multipulse Amplitude Modulation Scheme for data hiding and watermarking of still
images”, IEEE JSAC, Vol. 16, No. 4, May 1998, pp. 510-524.

21. G.C. Langelaar, J.C.A. van der Lubbe, J. Biemond,“Copy protection for multimedia data
based on labeling techniques”, 17th Symposium on Information Theory in the Benelux, En-
schede, The Netherlands, May 1996.

22. G.F.G. Depovere, A.C.C Kalker, and J.P.M.G. Linnartz, “Improved watermark detection reli-
ability using filtering before correlation”, Int. Conf. on Image Processing, ICIP, October 1998,
Chicago IL.

23. G. Langelaar, R. Lagendijk and J. Biemond, “Removing Spread Spectrum Watermarks”,
Proceedings of Eusipco-98, Volume IV, pp. 2281–2284, Rhodes, 1998.

24. S.P. Lipshitz, R.A. Wannamaker and J. Vanderkooy, “Quantization and Dither: A theoretical
survey”, J. Audio Eng. Soc., Vol. 40, No. 5, May 1992, pp. 355-375.

25. T. Kalker and A.J.E.M Janssen, “Analysis of SPOMF Detection”, Accepted at ICIP-99,
Kobe, Japan, 1999.

26. J.P.M.G. Linnartz, A.A.C. Kalker, J. Haitsma, “Detecting electronic watermarks in digital
video”, Paper 3010, Invited paper for special session at ICCASP-99, Phoenix, AR, March
1999.

27. M. Wu, M. Miller, J. Bloom, I. Cox, “Watermark detection and normalized correlation”,
presented at ICCASP 99, Phoenix, AR, March 1999, also at DSP Conference in Florance.


