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Abstract

We investigate the fundamental properties of a biometrical identification system. More spe-
cially we focus on finding the capacity of such a system, i.e. a measure for the number of individ-
uals that can be reliably identified. We show that this capacity can be computed using standard
information theoretic concepts.

1 Introduction

Recent years have shown an increasing awareness of the importance of security in our highly technical
society. This interest covers a wide range of topics, from measures for airport security to the protection
of digital multimedia content on pre-pressed disks.

The revival of biometrical identification as a relevant research topic fits in this general trend. The
objective of a biometrical identification system is to identify individuals on the basis of physical (pas-
sive or active) features. One of the oldest and probably best known of such feature$isriiue
fingerprint One can safely say that for a long time fingerprint-based identification and biometri-
cal identification have been seen as one and the same thing. The last decade other human features
have become practical, and there is now an active research community on iris-based recognition, face
recognition, voice recognition and others. A good overview of the general biometrical identification
systems, their pros and their cons, can be found in [4].

Very recently the use of biometrical identification methods has been extended to include physical
device identification. For example, in the context of the SEARCH project at MIT, Physical Unknown
Functions (PUFS) are studied for this purpose [3].

Biometrical identification in general involves two phases. In an enrollment phase all individuals
are observed and for each individual a record is added to a database. This record contains enrollment-
data, i.e. a noisy version of the biometrical data corresponding to the individual. In the identification
phase an unknown individual is observed again. The resulting identification-data, another noisy ver-
sion of the biometrical data of the unknown individual, is compared to (all) the enroliment-data in the
database and the system has to come up with an estimate of the individual. Essential in this procedure
is that both in the enroliment-phase and in the identification-phase noisy versions of the biometrical
data are obtained. The actual biometrical data of each individual remain unknown.

We are interested in knowing how many individuals can reliably be identified by a biometrical
identification system as a function of the amount of observed data and the quality of the observations.
We first describe a model for the enrollment and identification procedure. Within this model our
guestion has an answer in terms of an information-theoretical quantity.
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Figure 1: Model of a biometrical identification system.
2 Model description
We assume that there ak& individuals. Each individual has an indexe {1, 2,---, M}. To each
individual there corresponds a biometrical data sequetice= (X1, X, - - - , X_) With components
(symbols)x for | = 1,L that assume a value from an alphaB&t The sequence'(w) is the
sequence for individuab for w € {1, 2, -- - , M}. All these sequences are supposed tgdrerated
at random The corresponding probability distribution is
Pr{X-(w) = x'} = ]_[ Q(x), forall x- e x*, 1)
I=1,L

for all individualsw € {1,2,---, M}. Hence each biometrical data sequence is supposed to be

generated by an independent identically distributed (i.i.d.) source according to symbol distribution
{QX) : x € X}

In the enrollment phase all biometrical data sequences are observed via a memoryless enrollment
channellY, Ps(y|x), X'}. Here) is the enrollment output-alphabet. Now

PrY"(w) = y X" (w) = x"w)} = [] Pe(ilxi(w)) forall y* = (y1, y2. .-+, ) € V-, (2)

1=1,L
for individualsw e (1,2, ---, M} with biometrical data sequence$(w) = (Xy(w), Xo(w), -- -,
X, (w)). The resulting enrollment output sequengésw) for w € {1, 2, ---, M} are all stored in a

database. Hence it is possible to acogssv) from the database for all these

In the identification phase the biometrical data sequeti¢e) of an unknown individualy
{1,2,---, M} is observed via a memoryless identification chafigl P, (z|x), X'}. Here Z is the
identification output alphabet. Now

Pzt = 2|1 X" (w) = x- (w)} = 1_[ Pz|xw)) forallz- = (z1,2,--- ,z.) € Z-.  (3)
1=1,L

The resulting identification output sequerrteis used by a decoder that also has access to all enroll-
ment output sequences (1), y-(2), - - - , y-(M) which were stored in the database. This decoder
produces an estimate of the index of the unknown individual, i.e.

w=d (" y" @D,y 2, -, y-(M)). (4)
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We assume that the estimatee {¢, 1,2, --- , M}, thus an erasureis also a valid decoder output.
The two relevant system parameters arerttaimal error probability

pmax 2 max PrW #£ w|W = w} (5)
and therate
Al
R= -log, M. (6)

3 Statement of result

We say that the capacity of a biometrical syster@ i for any § > 0 there exist, for all large enough
L, decoders that achieve

1
ElogzM > C-—34,
pmax. . (7

Theorem 1 The capacity of a biometrical identification system is given by
C=1(;2), 8
whereP(y,2) = Y .y Q(X)Pe(YIX)P (z|x) forall y € Y andz € Z.

4  OQutline of proof

4.1 Achievability

The decoder is based on typicality, see Cover and Thomas [1]. More precisely, the output of the
decoder is the uniqu& satisfying

(y @), 25 e ALY, 2). 9)

If no uniquew exists the decoder outputs an erasure. The typicad S€Y, Z) is based on distribution
P(ly,2) =)  cx QXX)Pe(YIX)P (z|x) fory € V), z € Z. Parametet > 0.

Two kinds of error can occur. An error of the first kind occurs when the enrollment sequence of
the tested individual is not typical with the identification sequence resulting from the test. An error
of the second kind occurs if the enrollment sequence of some other individual is typical with this
identification sequence.

In the outline of the proof below we address errors of the first kind in (A), errors of the second
kind in (B) and (C). Part (D) connects our result to the random coding argument.

(A) Note that now for ally- € Y* andz- € Z*

PrY (w) = y5, Z- =2 W =w} = [] D QeOP( )P @ %). (10)

1=1,L xeX

Here z" is the output of the identification channel that is causedkbgw). This implies that the
probability P{(Y!(w), Zb) ¢ AL(Y, 2)} < ¢ for all large enought..

1The stochastic processes that play a role here are the generation of the biometrical data sequences and the transmission
of these sequences over the enrollment and identification channel.



(B) Again let z- be the output of the identification channel that is caused'tyw). For all
y- e Y- andzt € Zt andw’ # w
PiY () =y, Z" =" W =w}= [ D QUOPtiIx) Y QR @Ix).  (11)
I=1LxeX xeX

Therefore Pr(Y (w'), Zb) € AL(Y, Z2)} < 27 HIT(V:2)=3],

(C) The union bound now yields that fd = 2L[' Y:2~4 the error probabilities YW # w|W =
w} can be made smaller tham By increasing..

(D) Note that the generation of the biometrical data yields the randomness that makes it all work.
We get the random codg' (1), y-(2), - - - , y- (M)} for free!

4.2 Converse

Note that we did not assume any a priori distribution over the individuals that are to be identified. Let
us see what happens if we assume Was uniformly distributed ovefl, 2, --- , M}. Then

PHW £ W) < max PAW # w|W = w), (12)

and now we can apply Fano’s inequality

HWIY (D), Y5 ©2), -, YE(M), ZY) < 1+ PHW # W}log, M. (13)
Now
logpbM = H(W)
= HWIY'@D), Y @), -, Y (M)
< T(W; ZHYE@), YH@), -+, YE(M)) 4+ 14 P{W # W} log, M. (14)
Another step
LW; ZHYE @), YR@), -, YEM) < H(ZD) = H(ZM YR (w), w)
= LH(Z)—LH(ZIY)=LI(Y; 2). (15)

These are the main steps in the converse.

5 Likelihoods, hypothesis testing

We have seen before that a decoder which is based on typicality achieves capacity. Nevertheless such
a decoder may not be optimal in the sense that it minimizes the maximum error probability. In a
more general setting we may see our problem as an hypothesis testing procedure, i.e. a procedure that
aims at achieving the best trade-off between certain error probabilities. An optimal hypothesis testing
procedure is based on the likelihoods of the observed data (enrollment data and identification data)

given the individuaw € {1, 2, - -- , M}. For individualw this likelihood can be expressed as
P(y"(w), z-|w)
Piy-(D), y-2), -,y (w), -+, y*(M), 2" w) = Py (w'
(Y D, Y @,y ), L YR, 2 w) w/];[M e
L L
_ P(y (Lw),Z [w) (16)
P(y-(w)|w)



The relevant factor (the factor that dependaugrcan now be written as

PHZE = 2 Y () =yt W = w) = [] ek QUPMIOR @D (17)
’ =1L > xex QUOPe(YI[X)
This confirms the fact that the enroliment output sequegkeb), y-(2), - - - , y- (M)} can be viewed

as codewords. These codewords are observed via a memoryless dianhet|y), V1.

6 Examples

As afirst simple example assume tbais Bernoulli with parametep = Pr{X = 1} = 0.5. Moreover
let

Y = X+ N
Z = X+N, (18)

with Bernoulli noise variabledle andN; with parameters, andd;, respectively. Addition is modulo-
2. Then
[(Y;Z)=1-H(d), (19)

with d = de(1 — di) + (1 — do)di. Therefore the "channel” betweé&hand Z is a binary symmetric
channel with transition probabilitd and uniform input onY. Note that in this example we can
conceptually think of the enrollment process as error free, and the identification process as distorted
by the concatenation of the original chann&s— Y and X — Z, yielding a binary symmetric
channel with probability of errad.

As a second more interesting example consider the caseXtlimtGaussian, zero-mean, with
varianceP. Moreover let

Y = X+ N
Z = Z+N, (20)

with zero-mean Gaussian noise variabigsandN; having variances? ando? respectively. Then

(P+02)(P+0?)

1
1(Y;Z2) = =1
( ) 0g2 (P+O’ez)(P+O’|2)—P2

2
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Note that in this example, in contrast to the first one, we cannot model the enrollment process as
error free, and the identification process as an additive Gaussian channel with some noise &ariance
dependingonly on o2 ando?. One easily sees that this phenomenon find its cause in the fact that in
general the backward channel of an additive channel is non-additive.

7 Conclusion and remarks

We have shown that it is possible to derive bounds on the capacity of biometric identification systems
with relatively simple methods. The main result of this paper is that capacity can be computed as the
mutual information between an input source and an output source that are related by the concatenation
of the backward enrollment channel and the forward identification channel.



We have not considered the probability that an individual, that did not undergo the enrollment
procedure, is identified as one of the individuals that did enroll properly. For Ragsaller than
I (Y; Z) this probability can also be made smaller than any 0 by increasing-.

Note that decoding according to our achievability proof involves an exhaustive search procedure.
It is not known how the system should be modified in such a way that the decoding complexity is
decreased. This paper did not construct such real’ biometric codes and this remains a topic of future
research.

The problem that we have investigated here suggests that we should increase the block-length
to achieve capacity. However in practise we are more interested in achieving a small error probability
for a given number of individuals than to achieve capacity. Still the capacity that we have determined
here is a fundamental limit that tells us what we can expect from a certain system.
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