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Consider a watermarked image, in which the watermark is embedded multi-

plicatively (i.e, qi = pi(1+wi)). Under the assumption that the watermark is

a known, binary valued sequence and the original image is an i.i.d. random

sequence drawn from a Rayleigh distribution, we show that this watermark

should be detected by squaring the observations before correlating them with

the watermark. This is proven using a maximum likelihood estimation ap-

proach. Extensions to the Gaussian and Weibull distribution are possible.

INTRODUCTION

Recently, watermarking of audio and video material has received much atten-

tion. This interest has been driven by the fast digitalisation of such content. In

their digital form, audio and video (or content, for short) can easily be stored and

transmitted, but the downside is that they can be easily copied, as well, without

loss of quality. To enable trade of electronic media, it is therefore of eminent

importance that new techniques for copyright protection are developed.

Digital watermarking forms an important building block of copyright protec-

tion schemes. A digital watermark is an additional piece of information which is

embedded in the content. The following is a list of the most common requirements

for watermarking: the watermark should

1. be imperceptible;

2. survive A/D and D/A conversion and common compression techniques;

3. be robust against geometric distortions (e.g., scaling).

The imperceptibility requirement is, among others, a restriction on the allowable

energy of the watermark, relative to the energy of the content. The requirements

2 and 3, above, not only mean that the watermark should be left intact by

the mentioned operations, but also that a distorted watermark should still be

detectable. All of this shows the necessity of having a very strong and reliable

detection method.
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In the literature it is very common that the watermark is embedded in an

additive way, i.e.,

qi = pi + swi;

where fwig is the watermark sequence, fpig is the original image, fqig is the

watermarked image and s is the strength of embedding. If the image fpig is

unknown, such an additive watermark is optimally detected by correlation with

the watermark. This can be proven using a version of the matched �ltering the-

orem. Many re�nements and improvements of this detection scheme are known,

for instance by using whitening or Wiener �lters. We cannot give an exhaustive

list of articles dealing with optimal detection of additive watermarks. Instead,

we refer to the very recent papers [3],[4],[5],[6].

In this paper we want to look at a di�erent way of embedding watermarks:

multiplicative embedding. The watermarked coeÆcients qi are now formed from

the watermark coeÆcients wi and the original image coeÆcients pi according to

qi = pi(1 + swi); (1)

where s is the embedding strength. This way of embedding was proposed, among

others, by Cox et.al. [1]. It provides a way of perceptual masking of the watermark

in the image. Weber's law tells us that for images the luminance of a pixel is

a useful perceptual mask. It is well-known that straightforwardly embedding a

watermark in an additive way will result in an image with perceptible artefacts.

Instead, application of Weber's perceptual mask leads to the invisibility of the

watermark. This mask would lead to the multiplicative embedding studied in

this paper, as in equation (1).

It is unlikely that straightforward correlation with the watermark pattern

would be the optimal manner of detecting the presence of the watermark in the

multiplicative case, as well. Derivation of a truly optimal detector would involve

a likelihood ratio test. For this to be a tractable problem, one has to assume what

the probability distribution of s is. For this reason, De Rosa et.al [2] did restrict

to a �xed value of s, in their derivation of an optimal detector for multiplicative

watermarks. We do not want to make any assumption on the distribution of

s, as in practice the value of s is not known, a priori. It is chosen as a trade-

o� between visibility and robustness of the watermark. Moreover, many attacks



against the watermark can be modelled as a transformation of the image a�ecting

the e�ective embedding depth s. Therefore we have to take a completely di�erent

approach, based on maximum likelihood estimation of s.

Note that for the present discussion of detection methods it is not relevant

whether pi and qi are spatial variables (like the luminance values of a picture),

temporal variables (like the sound intensity in an audio frame), DCT coeÆcients

or any other set of representative variables. Of course, the particular choice may

have a strong impact on perceptibility and robustness of the watermark, as well

as on which statistical model is suitable for the image coeÆcients.

MAIN RESULT

In the present section we formulate and prove our main result: the derivation

of a optimal-estimation based detector for multiplicative watermarks. This is

done under the assumption that the original data is modelled by a Rayleigh

distribution. We show that under these assumptions, our detector consists of

squaring the data and subsequently correlating with the watermark. We do not

restrict a priori what values s can take.

The Rayleigh distribution is a suitable model for Fourier coeÆcients [2]. The

Rayleigh probability density function is given by

f(x) =
x

�2
e�

x2

2�2 :

DCT coeÆcients are usually modelled by a Weibull probability density function:

f(x) =
�

�

�x
�

���1
e�(

x
�)

�

;

The Rayleigh distribution is a special case of the Weibull distribution, corre-

sponding to � = 2 and � =
p
2�. In the third section, we comment on extensions

to Gaussian and Weibull distributions.

In the sequel, we use the following notation for inner product and norm of

N-tuples:

ha; bi =
1

N

NX
i=1

aibi; kak =
p
ha; ai =

vuut 1

N

NX
1=i

a2i :



Theorem 1 Consider the sequences P = fpi : i = 1; : : : ; Ng, W = fwi : i =

1; : : : ; Ng and Q = fqi : i = 1; : : : ; Ng. Assume that P is an i.i.d. sequence of

stochastic variables, drawn from a Rayleigh distribution with parameter �. More-

over assume that W is a known, binary valued sequence (i.e., 8i : wi = �1),
satisfying

1

N

NX
i=1

wi = 0: (2)

The decision variable d for a detector based on maximum-likelihood estimation

of s is

d =
1

N

NX
i=1

q2iwi: (3)

The idea of the proof is as follows. We derive a maximum-likelihood estimator

for s. That is, we derive the joint probability density function f(Q; s) for the

observationsQ = fqig, given s. The maximum-likelihood estimate ŝ is the value of

s which maximises f for the observed values of qi. It follows that ŝ is proportional

to d = 1

N

PN

i=1 q
2

iwi.

Proof: As pi is distributed according to a Rayleigh distribution with parameter

�, the joint probability density function of fqig, where qi = pi(1 + swi) and s is

viewed as a parameter, is given by

f(Q; s) =
NY
i=1

qi
�2(1 + swi)2

e
� q2i
2�2(1 + swi)

2

:

The paradigm of maximum likelihood estimation now means that we estimate

s such that the estimate ŝ maximises the above joint probability density. It is

equivalent, but notationally easier, to maximise the logarithm of f :

L(Q; s) = �2N log(�) +
NX
i=1

log(qi)� 2
NX
i=1

log(1 + swi)� q2i
2�2(1 + swi)2

:



Now, we need to solve

@L

@s
= �

NX
i=1

2wi

1 + swi

+
q2iwi

�2(1 + swi)3
= 0:

Because of imperceptibility requirements, it is reasonable to assume that jsj is
small. Therefore, we replace @L=@s by its �rst order Taylor expansion

@L

@s
� �2

NX
i=1

wi(1� swi) +
1

�2
q2iwi(1� 3swi) = 0:

Solving for s and using the fact that fwig is a zero-mean sequence leads to

ŝ =
1

N

PN

i=1

q2iwi

�2

1

N

PN

i=1 3
q2iw

2

i

�2
� 2w2

i

: (4)

Note that wi = �1 implies that

1

N

NX
i=1

q2iw
2

i =
1

N

NX
i=1

q2i = kQ2k:

This shows that under our conditions

ŝ =
1

N

PN

i=1 q
2

iwi

3kQ2k � 2�2
: (5)

The requirement in Theorem 1 imposed on the watermark comes down to

partitioning the index set f1; : : : ; Ng into two subsets, one of which corresponds

to wi = 1 and the other to wi = �1. The requirement that pi are identically

distributed can be achieved by pre-whitening the data, in the same way as for

additive watermarks.

To be able to set a threshold for the detection, we need to have some infor-

mation about the probability distribution of d as a function of s.

Theorem 2 Under the assumptions of Theorem 1, the decision variable d satis-

�es

E[djs;W ] = 4s�2;



var(djs;W ) =
4�4

N
(1 + 6s2 + s4):

Proof: This proof is a matter of long but straightforward computations. All

summations are over the range 1; : : : ; N . First,

E[djs;W ] = E[
1

N

X
q2iwi js;W ]

=
1

N

X
(1 + swi)

2wiEp
2

i

=
1

N

X
(wi + 2sw2

i + w3

i )Ep
2

i

=
2s

N

X
w2

iEp
2

i

= 4s�2

Secondly,

E[d2js;W ] =
1

N2

XX
(1 + swi)

2(1 + sw)j)2wiwjEp
2

i p
2

j

=
1

N2

XX
(wi + 2sw2

i + s2w3

i )(wj + 2sw2

j + s2w3

j )Ep
2

i p
2

j :

Now denoting 
0 = Ep2i p
2

j = 4�4 for i 6= j and 
1 = Ep4i = 8�4, we obtain

E[d2js;W ] =

0
N2

XX
(wi + 2sw2

i + s2w3

i )(wj + 2sw2

j + s2w3

j )

+

1 � 
0
N2

X
(wi + 2sw2

i + s2w3

i )
2

=

0
N2

�X
2sw2

i

�2
+


1 � 
0
N2

X
w2

i + 6s2w4

i + s4w6

i

= 4s2
0 +
(
1 � 
0)

N
(1 + 6s2 + s4)

= 16s2�4 +
1

N
4�4(1 + 6s2 + s4);

where we used the fact that summations over odd powers of wi or wj are equal

to zero. Using this, we obtain

var(djs;W ) = E[d2js;W ]� (E[djs;W ])2

=
4�4

N
(1 + 6s2 + s4)



An important measure of the strength of an estimation method is the quotient

between the expected value of d (depending on s) and the standard deviation of d

for s = 0. In the case of Rayleigh distributed data and the quadratic correlation

of Theorem 1, we have

E[djs;W ]p
var(djs = 0;W )

= 2
p
Ns:

If, instead, we use linear correlation (i.e., dl = hQ;W i), we have

E[dljs;W ] = s; var(dljs;W ) =
�2(4� �)

2N
;

and so the quotient would be

E[dljs;W ]p
var(dljs = 0;W )

=

p
2
p
Ns

�
p
4� �

;

which di�ers from the value for multiplicative watermarks by a factor �
p
4��p
2

.

GENERALISATION TO OTHER DISTRIBUTIONS

The analysis in this paper was carried out for data pi which are an i.i.d.

sequence drawn from a Rayleigh distribution. The result can easily be generalized

to data drawn from a Gaussian distribution. In this case, we obtain

E[djs;W ] = 2s�2

var(djs;W ) =
2�4

N
(1 + 6s2 + s4):

The proofs remain virtually unchanged.

With a little bit more work, the result can also be extended to Weibull dis-

tributions. If we assume that the data pi are i.i.d. distributed according to the

Weibull distribution, then we can carry out the same derivation of a detector

based on maximum-likelihood estimation of s. This leads to the decision variable

d =
1

N

NX
i=1

q�i wi:

Note that the Rayleigh distribution with parameter � is a special case of the

Weibull distribution, corresponding to the parameters � = 2, � =
p
2�.



CONCLUSIONS

In this paper we have derived an optimal-estimation based detector for mul-

tiplicative watermarks. Our derivation shows that the sample values should be

squared before correlation. The resulting detector di�ers from those used nowa-

days, which are based on correlating the samples directly with the watermark.

This result shows that very likely it is possible to improve on the common prac-

tice to use correlation of a watermark with (non-squared) data to detect additive

watermarks which are embedded using perceptual masks (the result of which

embedding can sometimes be modelled by a multiplicative watermark).

Our result has as a consequences for implementation, that before anything

is done all sample values have to be squared. If, for instance, the watermark

detection uses tiling, this has to be done after squaring.

TilingSquaring Correlation

REFERENCES

[1] I.J. Cox, J. Killian, F. Thomson Leighton, and T. Shamoon. Secure spread

spectrum watermarking for multimedia. IEEE Trans. IP, 6:1673{1687, 1997.

[2] A. de Rosa, M. Barni, F. Bartolini, V. Cappellini, and A. Piva. Optimum

decoding of non-additive full frame DFT watermarks. In Proc. 3rd Int. In-

form. Hiding Workshop, pages 167{179, Dresden, 1999.

[3] J.R. Hernandez and F. Perez-Gonzalez. Statistical analysis of watermarking

schemes for copyright protection of images. Proc. IEEE, 87:1142{1166, 1999.

[4] J.P. Linnartz, G. Depovere, and T. Kalker. On the design of a watermark-

ing system: considerations and rationales. In Proc. 3rd Int. Inform. Hiding

Workshop, pages 303{314, Dresden, 1999.

[5] M.L. Miller and J.A. Bloom. Computing the probability of false watermark

detection. In Proc. 3rd Int. Inform. Hiding Workshop, pages 154{166, Dres-

den, 1999.

[6] S. Voloshynovskiy, A. Herrigel, N. Baumgaertner, and T. Pun. A stochas-

tic approach to content adaptive digital image watermarking. In Proc. 3rd

Int. Inform. Hiding Workshop, pages 219{244, Dresden, 1999.


