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Abstract

A watermark is a perceptually unobstructive
mark embedded in an image, audio or video clip
or other multimedia asset. A watermark can
carry additional information, for instance about
the source and copyright status of a document or
its intended recipient, its rights and restrictions.
We analyse the reliability of detecting such wa-
termarks, modeling it as a detection problem
where the original content acts as noise or inter-
ference. Probabilities of incorrect detections are
expressed in terms of the watermark-to-image
power ratio, showing a signi�cant similarity in
the problem of detecting watermarks and that
of receiving weak spread-spectrum signals over
a radio channel with strong interference. Theo-
retical results are veri�ed by experiments.

I Background

Electronic watermarking is a new research area,
combining aspects of digital signal processing,
cryptography, statistical communication theory
and human perception. It aims at embedding
additional data into clear content (images, audio
etc) in a way that is di�cult to remove [1-13].
Principal applications of electronic watermarks
are in copyright enforcement, automatic meter-
ing and monitoring of asset usage in multi-media
applications, piracy tracing, and in providing
additional information, such as image captions.
New multi-media networks and services facili-
tate the distribution of content, but at the same
time make copying and copyright piracy simple.
Here we see a clear need to embed copyright
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data, such as the ownership or the identity of
the authorized user in an indelible way. Typical
requirements for watermarking and �ngerprint-
ing methods include:

1. Erasing the watermark should be techni-
cally di�cult. Methods should be robust
against attackers knowing the watermark-
ing algorithm but not the key.

2. Replacing the watermark by another water-
mark should be a di�cult task.

3. The watermarking scheme should be robust
to transmission and storage imperfections
(such as compression, noise addition, for-
mat conversion, bit errors) signal process-
ing artefacts (noise reduction, �ltering).

4. It should be robust against typical attacks,
e.g. described in [13].

5. It should also be robust against colluding
pirates who combine multiple versions of
the same content that are stamped with dif-
ferent watermarks.

6. The watermark should be unobstructive,
and not annoying to bona-�de users.

The organization of the paper is as follows. Sec-
tion I provides an introduction to the problem
of watermarking, its potential and limitations.
Section II introduces our model of the image
and the watermark. It extends the idea pro-
posed in [1] to regard the original content as in-
terference during the detection of a weak wanted
signal (namely the watermark). Section III re-
views several proposed methods for watermark-
ing and veri�es where the model applies. Sec-
tion IV develops the theoretical performance of
a correlator detector, as typically proposed in
many recent papers. The model is veri�ed with
experiments in Section V. Section VI concludes
this paper.



II Formulation of Model

We approach the problem of watermark detec-
tion by assuming a stationary process p as a
model for our set of images. Given a water-
mark w(n) we decide whether an image is water-
marked or not by computing a decision variable
y and comparing y to a threshold ythr. We will
derive expressions for the statistical properties
of y and the reliability of detection.

II.1 Image Model

We address an image of size N1 by N2 pixels
with a total of N = N1N2 pixels. The intensity
level of the pixel with coordinates n = (n1; n2),
(0 � n1 � N1�1; 0 � n2 � N2�1) is denoted as
p(n). We denote e1 = (1; 0) and e2 = (0; 1), so
n = n1e1+n2e2. The set of all pixel coordinates
is denoted as A, where

A = fn : 0 � n1 � N1 � 1; 0 � n2 � N2 � 1g:

In color pictures, p(n) is a YUV or RGB vector,
but for sake of simplicity we restrict our discus-
sion to gray scale images, in which p(n) takes
on real or integer values in a certain interval.
Whenever convenient we will represent p(n) as
a z-expression p(z) de�ned by

p(z) =
X
n2A

p(n)z�n

=
X
n2A

p(n)z�n11 z�n22

The recipient of an image q(n) sees an altered
(e.g. watermarked, �ltered, quantized or oth-
erwise manipulated) matrix that resulted from
p(n). A watermark detector has to operate on
the a posteriori observation q(n) while having
knowledge on the a priori statistical behaviour
of p(n). We model the image as a sample (or
a statistical realization) of a random matrix of
N1 by N2 values. The k-th moment of the gray
level of each pixel is denoted as �k = E[ pk(n) ].
For our analysis, we assume spatial stationary,
thus �k is considered not to depend on the lo-
cation of the pixel. In particular, �1 represents
the average value or DC-component in the im-
age and �2 = E[ p2(n) ] represents the average
power in a pixel and Ep = N�2 is the aver-
age total energy in an image. The variance is
�2 = E[ (p(n)� �1)

2 ] = �2 � �21. The intensity
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Figure 1: Normalized Correlation (Rp(�) �
�21)=�

2 versus horizontal shift �1 expressed in
pixels. Solid line: measurement for \Teeny 1"
image. Crosses: theoretical results for � = 0:99.

levels of pixels n and m = (m1;m2) are corre-
lated, with

E[ p(n)p(m) ] = Rp;p(n�m):

The correlation only depends on the di�erence
vector � = (�1;�2) = (n1 �m1; n2 �m2), as
we assume that the image has homogeneous sta-
tistical properties (wide-sense spatial stationar-
ity). In order to make calculations for our ex-
amples tractable, we simplify the image model
assuming the �rst-order separable autocorrela-
tion function (acf ) [14]

Rp;p(�) = �21 + �2�j�j

where j�j = j�1j + j�2j and where � can be
interpreted as a measure of the correlation be-
tween adjacent pixels in the image. Experiments
reveal that typically � � 0:9 : : : 0:99. As il-
lustrated in Figure 1, we found � � 0:99 for
the Teeny 1 image. For this image, the sam-
ple mean is �1 = 103 and the sample standard
deviation is about � = 53. We denote ~p(n) as
the non-DC components of the image, that is
~p(n) = p(n) � �1, so R~p = �2�j�j. Some of
the assumptions made here seem a crude ap-
proximation of the typical properties of images.
From experiments such as those to be reported
in Section V, it appeared that reliability esti-
mates based on this crude model can be rea-
sonably accurate for the purpose of this evalua-
tion. These assumptions, however, exclude cer-
tain images, such as binary images or computer-
generated images with a limited number of col-
ors.



II.2 Watermark Model

To detect a watermark in a suspect image, some
proposed methods only use the suspect image
and reference data on the watermark, while
other methods also require the availability and
use of the original image. We assume here that
p(n) is not available at the detector. The wa-
termark is represented by w(n) which takes on
real values in all pixels n 2 A. This watermark
w(n) is added to the original image. This re-
sults in the marked image q(n) = p(n) + w(n).
This model implicitly assumes that no spatial
transformation of the image (resizing, cropping,
rotation, etc.) is conducted. We aim at detect-
ing whether a particular watermark is present
or not, based on knowledge of w(n).

In the special case that the watermark does not
depend on p(n), i.e., if w(n) would be identi-
cal for any image p(n), we may de�ne signal-
to-noise ratios (watermark energy-to-pixel vari-
ance), and we can apply theoretical frameworks
from detecting communication signals transmit-
ted over noisy channels. The correlation of wa-
termark w1 with w2 is

Rw1;w2
(�) =

1

N

X
n2A

w1(n)w2(n+�)

where we assume for simplicity that n+� wraps
around when it formally falls outside of the set
A. Note that the correlation Rw1;w2

is de�ned
by a spatial summation whereas the correlation
Rp;p is de�ned by the statistics of the random
process p(n). If the image size is large enough
(N1 � 0; N2 � 0) and if the process p(n) is
assumed to be ergodic we are allowed to approx-
imate the statistical autocorrelation Rp;p(�) by
a spatial autocorrelation

Rp;p(�) �
1

N

X
n2A

p(n)p(n+�):

The average energy in a watermark w equals
Ew = Rw;w(0) and is denoted as Ew.

The DC content of the watermark w isW0(w) =
1
N

P
n2A w(n). A watermark w is DC-free if

W0(w) = 0.

Some watermarks are generated by randomly
generating a +k or �k pixel value for w(n),
independently for each pixel n. When this
process is ergodic and the image size is large
enough we may assume Rw;w(�1) = Rw;w(�2)

for �1;�2 6= 0. With this assumption it follows
that

Rw;w(�) =

(
Ew if � = 0
1

N�1
(NW 2

0 �Ew) otherwise
:

(1)

By the law of large numbers W 2
0 decays with

1
N
. The non-zero terms in the autocorrelation

function are therefore of the form �=N . This
implies that for N1; N2 large enough the auto-
correlation function Rw;w will approximate a �-
function. Watermarks with this property are
referred to as white watermarks. A watermark
is called purely white if its autocorrelation func-
tion is exactly equal to a �-function. We have
seen that purely white watermarks cannot be
DC-free.

As an other example, we will treat the case
that the watermark has a low-pass spatial spec-
trum. This method has for instance been ad-
vocated by Cox et al. [9]. In such situa-
tion, a potential attacker can not easily remove
the watermark by low-pass �ltering. Moreover,
JPEG compression typically removes or distorts
high-frequency components. A low-pass wa-
termark can be generated by spatially �lter-
ing a spatially white watermark w(z). A �rst-
order two dimensional spatial smoothing IIR

�lter S�(z) =
�
(1� �z�11 )(1� �z�12 )

��1
com-

putes ŵ(z) = S�(z)w(z). Considering only the
zeroth-order approximation of Rw;w (i.e. dis-
carding the terms with postive powers of 1

N
) we

may put Rw;w(z) = Ew. Then Rŵ;ŵ(z) is com-
puted as

Rŵ;ŵ(z) = S(z)S(z�1)Rw;w(z) (2)

= Ew

X
n

�jnj

(1� �2)2
z�n:

It follows that ŵ has a �rst order acf with cor-
relation factor �. The average energy of ŵ is
given by

Eŵ =
Ew

(1� �2)2
:

III Review of some water-

mark proposals

Next, we will review a few proposals for water-
marking methods, and discuss how these meth-



ods relate to our framework. Many watermark-
ing methods have been proposed in which the
watermark is linear and independent of the im-
age, similar to our assumptions. It turns out
that methods by Bender et al. [3] [10], Pitas et
al. [4], Cox et al. [9] all �t into the framework
covered here. Moreover their proposed detec-
tion closely resembles the correlator concept to
be covered in the next section.

Bender et al. [3] [10] describe a watermark-
ing method called "Patchwork". This method
takes np(np � N=2) pairs of image points in
a way known to the transmitter and receiver.
The brightness of a pixel is increased by one
and the brightness of the corresponding point
is decreased by one. That is, using our nota-
tion of Section II, w(n) = �1 in np points, it
equals 1 in np points, and is 0 in the remaining
N�2np points. Thus, the watermark is DC-free
(W0 = 0) and the average energy in the water-
mark is Ew = 2np=N . The authors use the np
points to detect the watermark, but ignore all
other N � 2np points. However, because of the
correlation in pixel values, these other N � 2np
can be exploited in the detector, as we will show
later. In [14], a communication-theoretical eval-
uation is presented, which use simular assump-
tions as in our Section II, however ignoring for
instance correlation between pixel values.

Pitas and Kaskalis [4] describe a similar method
of partitioning the set of pixels into three sub-
sets of size np; np and N � 2np, respectively. As
a special case, one can take np = N=2. The two
subsets of equal size are used to embed and de-
tect the watermark. The brightness of the pixels
of one subset is altered by adding a positive in-
teger factor k, which depends on the image p(n)
such that the watermark-to-image ratio is su�-
ciently large. This method can be captured in
our model. We have Ew = k2=2, W0 = k=2.

Cox et al. [9] embed a sequence of real numbers
of length np in anN1 byN2 image by computing
the N1 by N2 DCT and adding the sequence
to the np highest DCT coe�cients, excluding
the DC component. The method is sensitive
to errors in determining the relative strength of
DCT components, so the original is used for this
purpose by both the sender and the recipient.

On the other hand, Zhao and Koch [8] [5] pro-
pose a method that does not lead itself well
to modelling by our framework. Their water-

mark embeds a bitstream in the DCT domain.
The image is divided up into 8x8 JPEG blocks.
In prede�ned 8x8 blocks which are known only
to the sender and the watermark detector, the
DCT coe�cients are modi�ed to ensure a cer-
tain relative size. In this scheme w(n) substan-
tially depends on p(n), and in a nonlinear way.

IV Correlator detector

Correlator detectors are interesting to study, for
several reasons. They are a mathematical gen-
eralization of the simple device in which wa-
termarks with w 2 f; 0;+1g are detected by
computing the normalized sum of all pixel val-
ues in which the watermark is negative, i.e.,
s� = 1

N

P
n:w(n)=�1 q(n) and the normalized

sum of all pixel values in which the water-
mark is positive, i.e., s+ = 1

N

P
n:w(n)=1 q(n).

Then, y = s+ � s� is used as a decision vari-
able, e.g. [3] [10]. Moreover, correlators are
known to be the optimum detector for particu-
lar situations, namely the Linear Time-Invariant
(LTI), frequency non-dispersive, Additive Gaus-
sian Noise (AWGN) channel, when the receiver
has full knowledge about the alphabet of wave-
forms used to transmit a message.

In a correlator detector, a decision variable y is
extracted from the received image q(n) by cor-
relating with a locally stored copy of the water-
mark w(n). Therefore y = Rw;q(0), with

Rw;q(�) =
1

N

X
n2A

w(n)q(n+�):

Figure 2 illustrates this correlation detector.
The model covers all detectors in which the de-
cision variable is a linear combination of pixel
luminance values in the image. Hence, it is a
generalization of many detectors proposed pre-
viously. It covers a broader class of watermarks
then the binary (w(n) 2 f�k; kg) or ternary
(w(n) 2 f�k; 0; kg) watermarks. It particularly
includes methods in which watermark data is
added to DCT coe�cients. For our analysis, we
separate y into a deterministic contribution yw
from the watermark,

yw =
1

N

X
n2A

w(n)w(n)

= Rw;w(0)

= Ew
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Figure 2: Watermark Embedder and Correla-
tion Detector

plus �ltered noise from the image yp

yp =
1

N

X
n2A

w(n)p(n)

= Rw;p(0):

Regarding yp, the mean value is found as the
product of the DC component in the watermark
and the image, with

E[ yp ] =
1

N
E[
X
n2A

w(n)p(n) ]

=
E[ p(n) ]

N

X
n2A

w(n)

= �1W0:

This result appears to be irrespective of the cor-
relation in pixels. To �nd the second moment,
we compute

E[ y2p ] = E[

 
1

N

X
n2A

w(n)p(n)

!2

] (3)

=
1

N2
E[

X
n;m2A

w(n)p(n)w(m)p(m) ]

=
1

N2
E[

X
n2A

n+�2A

q(n;�)r(n;�) ]

= �21W
2
0 +

1

N2

0
B@E[ X

n2A
n+�2A

q(n;�)~r(n;�) ]

1
CA

where we have written ~p(n) = p(n) � �1,
q(n;�) = w(n)w(n+�), r(n;�) = p(n)p(n+�)
and ~r(n) = ~p(n)~p(n). Note that for correlated
pixels (� > 0) and spectrally non-white water-
marks, one has to account for non-zero cross
terms with � 6= 0. For the remainder of this
paper we will now assume that the image is
su�ciently large and that the autocorrelation
function R~p;~p(�) decays su�ciently fast. This
allows us to drop the restriction n + � 2 A in
the summation of Equation 3. Continuing the

computations from Equation 3 and assuming a
stationary and ergodic image source we �nd

E[ y2p ]� �21W
2
0 = (4)

=
1

N2

 X
�

X
n2A

q(n;�)E[ ~r(n;�) ]

!

=
1

N2

 X
�

X
n2A

q(n;�)R~p;~p(�)

!

=
1

N

 X
�

Rw;w(�)R~p;~p(�)

!
:

It follows that the variance �d of the decision
variable y due to image noise is given by the
expression

�2d =
1

N

X
�

Rw;w(�)R~p;~p(�): (5)

In order to have a reliable detection of a water-
mark it is required that the ratio Ew=�d is as
large as possible. We therefore de�ne the relia-
bility of detection �d as the ratio Ew=�d. The
consequences of Equation 5 with respect to �d
will be elaborated in the next sections.

IV.1 Example 1: White water-

marks

The white watermark reasonablymodels most of
the early proposals for increasing and decreas-
ing the pixel luminance according to a pseudo
random process. For an absolutely DC-free wa-
termark,W0(w) = 0, the decision variable y will
have zero mean.

For a white binary watermark with embedding
depth k, the variance �2d is computed as

�2d =
Ew�

2

N
+

�2�

N(N � 1)

X
�6=0

�j�j

=
Ew�

2

N
+

�2�

N(N � 1)

"�
1 + �

1� �

�2

� 1

#

where � is some constant dependent on the wa-
termark generation process (see Section II.2).
We see that the e�ect of pixel correlations is
signi�cant only if � is very close to unity (little
luminance changes) in a small-size image. If the

image is large enough, that is, if N �
h
1+�
1��

i2
,



we may approximate

�2d �
Ew�

2

N

In practical situations, this appears a reasonable
approximation. It follows that �d is given by

�d =

p
EwN

�
: (6)

Note that Equation 6 implies that the reliability
only depends on the total energy of the water-
mark and not on how this energy is distributed.

The value of �d in Equation 6 will be used in Sec-
tion IV.3 to obtain an expression for the proba-
bility of an incorrect detection.

IV.2 Example 2: Low-pass water-

mark

We now address a watermark with indepen-
dently randomly chosen pixel values, but which
is then �ltered by a two-dimensional �rst-order
�lter S�(z). Considering only the zero order
terms and using the results from Section II.2
(Equation 2) we compute

�2d =
Ew�

2

N

X
�

(��)j�j

=
Ew�

2

N

�
1 + ��

1� ��

�2

This reduces to the result of Section IV.1 for
� ! 0, i.e. for a white watermark. The reliabil-
ity is given by

�d =

p
EwN

�

1� ��

1 + ��
: (7)

Comparing this with Equation 6 we �nd that
the use of low-pass watermark leads to a loss of
reliability for � 6= 0.

IV.3 Error Rate

Because of the Central Limit Theorem, yp has a
Gaussian distribution if N1; N2 are su�ciently
large and if the contributions in the sums are
su�ciently independent. The Gaussian be-
haviour will be veri�ed in Section V. If we apply
a threshold ythr to decide that the watermark is
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Figure 3: Watermark detection error rates Pfa
and Pmd versus signal-to-noise ratio Ew=�

2 for
correlation detector. Experiments on Lenna

(�). Solid line: corresponding theoretical curve.

present if y � E[ yp ] > ythr, the probability of
a missed detection (the watermark is present in
q(n), but the detector thinks it is not) is

Pmd =
1

2
erfc

�
Ew � ythrp

2�d

�
:

On the other hand, given that no watermark is
embedded, a false alarm occurs with probability

Pfa =
1

2
erfc

�
ythrp
2�d

�
:

Putting ythr = Ew=2 provides

Pmd = Pfa (8)

=
1

2
erfc

�
Ew

2
p
2�d

�

=
1

2
erfc

�
�d

2
p
2

�

For the low-pass type of watermark of Sec-
tion IV.2 the error rate goes into

Pmd = Pfa

=
1

2
erfc

 r
EwN

8�2
1� ��

1 + ��

!

This result clearly shows that if the watermark
is con�ned to low-pass components of the image,
this signi�cantly a�ects the reliability of detec-
tion. In this case the random +/- terms in yp,
which are due to multiplying the image p with
the locally stored copy of the watermark ŵ, do



not cancel as rapidly as these would vanish for a
white watermark. If the watermark contains rel-
atively strong low-frequency components (large
�), the variance of yp is stronger and the error
rate is larger. If the watermark contains rela-
tively strong high-frequency components � � 0,
the variance is weaker, so the watermark sees
less interference from the image itself. However,
such a high-frequency watermark is more vul-
nerable to erasure by image processing, such as
low-pass �ltering (smoothing).

V Computational and Ex-

perimental Results

In our experiments, we approximated white
watermarks through pseudo-random sequences.
An appropriate choice appeared to be binary
watermarks, w(n) 2 f�k; kg with � = 0 gener-
ated by a 2-dimensional LFSR maximal length
sequence [16] [17] of length 214 � 1 = 127 � 129.
Such sequences have a negligibly small DC com-
ponent

P
n w(n) = �1 and a correlation func-

tion that has the appropriate �-function shape.
Repetition of the 127 by 129 basic pattern leads
to a periodic correlation function, but maintains
virtually zero correlation outside the peaks.

Figure 3 compares the above theoretical results
with measurements of the Lenna and Teeny im-
age. This Figure shows a good agreement be-
tween theory and experiment. In order to get
statistical results we simulated sources of images
by taking shifted and noisy versions of one of
these prototype images. We computed the com-
ponents of the decision variable and estimated
which signal-to-noise ratio would be needed to
achieve reliable detection.

VI Conclusions

In this paper, we proposed a mathematical
framework to model electronic watermarks em-
bedded in digital images. The model regards
the process of embedding and detecting a wa-
termark to be similar to that of a communica-
tion channel. It treats the original contents (the
image itself) as interference noise.

We observe that many detectors proposed for

watermarks are of the correlator type, though
often with minor modi�cations. Several essen-
tial di�erences appear with the case of trans-
mission over a linear time-invariant channel
with AWGN. Our model predicts reliability per-
formance (missed detection and false alarms).
In some special cases, particularly that of
a white watermark, the signal-to-noise ratio
(watermark-to-content-energy) appears the only
factor to in
uence the reliability of detection.
This leads to expressions for error probabilities
similar to those experienced in radio communi-
cation. However, the spectral content of the wa-
termark appears another critical parameter. If
the watermark is non-white, the spectral prop-
erties of the images have a signi�cant in
uence.

References

[1] B.M. Macq and J.J. Quisquater, "Cryptology

for digital tv broadcasting" Proc. of the IEEE,

Vol. 83 No. 6, 1993, pp. 944-957

[2] R.G. van Schyndel, A.Z. Tirkel, C.F. Osborne:

"A Digital Watermark", Int. IEEE Conf on Im-

age Processing, Vol.2., 13-16 Nov. 1994, IEEE

Comput. Soc. Press, Los Alamitos, CA, USA,

pp. 86-90

[3] W. Bender, D. Gruhl, N. Morimoto, "Tech-

niques for Data Hiding", Proceedings of the

SPIE, 2420:40, San Jose CA, USA, February

1995

[4] I. Pitas, T. Kaskalis : "Signature Casting on

Digital Images", Proceedings IEEE Workshop

on Nonlinear Signal and Image Processing, Neos

Marmaras, June 1995

[5] E. Koch, J. Zhao : "Towards Robust and

Hidden Image Copyright Labeling". Proceed-

ings IEEE Workshop on Nonlinear Signal and

Image Processing, Neos Marmaras, June, 1995

[6] Caronni G.: "Assuring Ownership Rights for

Digital Images", Proceedings of Reliable IT Sys-

tems, VIS '95, Vieweg Publishing Company,

Germany, 1995

[7] F.M. Boland, J.J.K. O Ruanaidh, C. Dautzen-

berg, "Watermarking Digital images for Copy-

right Protection", Proceedings of the 5th IEE

International Conference on Image Processing

and its Applications, no. 410, Edinburgh, July,

1995, pp. 326-330.



[8] J. Zhao, E. Koch : "Embedding Robust La-

bels into Images for Copyright Protection", Pro-

ceedings of the International Congress on Intel-

lectual Property Rights for Specialized Informa-

tion, Knowledge and New Technologies, Vienna,

Austria, August 1995

[9] I.J. Cox, J. Kilian, T. Leighton, T. Shamoon

"Secure Spread Spectrum Watermarking for

Multimedia", NEC Research Institute, Techni-

cal Report 95 - 10

[10] W. Bender, D. Gruhl, N. Morimoto and A.

Lu, "Techniques for data hiding", IBM Systems

Journal, Vol. 35. No. 3/4 1996

[11] I. Cox, J. Kilian, T. Leighton and T. Shamoon,

"A secure, robust watermark for multimedia",

in Proc. Workshop on Information Hiding, Univ.

of Cambridge, U.K., May 30 - June 1, 1996, pp.

175-190

[12] J.R. Smith, B. O. Comiskey, "Modulation

and Information Hiding in Images", in Proc.

Workshop on Information Hiding, Univ. of Cam-

bridge, U.K., May 30 - June 1, 1996, pp. 191 -

201

[13] I.J. Cox and J.P.M.G. Linnartz, "Public water-

marks and resistance to tampering", accepted

for presentation at Int. Conf. on Image Process-

ing (ICIP) 1997.

[14] N.S. Jayant and P. Noll., "Digital Coding of

waveforms" Prentice Hall, 1984.

[15] Ch. W. Therrien, "Discrete Random Signals

and Statistical Signal Processing" Prentice Hall,

1992.

[16] F.J. McWilliams and N.J.A. Sloane, "Pseude-

Random Sequences and arrays", Proc . of IEEE,

Vol. 64, No.12, Dec. 1976, pp. 1715-1729

[17] D. Lin and M. Liu, "Structure and Properies

of Linear Recurring m-arrays", IEEE Tr. on Inf.

Th., Vol. IT-39, No. 5, Sep. 1993, pp. 1758-1762



Biography Ton Kalker was born in The Netherlands in 1956. He received his M.S. degree
in mathematics in 1979 from the University of Leiden, The Netherlands. From 1979 until 1983,
while he was a Ph.D. candidate, he worked as a Research Assistant at the University of Leiden.
From 1983 until December 1985 he worked as a lecturer at the Computer Science Department of
the Technical University of Delft. In January 1986 he received his Ph.D. degree in Mathematics.
In December 1985 he joined the Philips Research Laboratories Eindhoven. Until January 1990
he worked in the �eld of Computer Aided Design. He specialized in (semi-) automatic tools for
system veri�cation. Currently he is a member of the Digital Signal Processing group of Philips
Research. His research interests include wavelets, multirate signal processing, motion estimation,
psycho physics, digital watermarking and digital video compression.


