Vehicle to Vehicle RF Propagation Measurements John S. Davis, II **28th Annual Asilomar Conference** November 1, 1994

Outline of Talk

- Brief Description of Intelligent Vehicle Highway Systemsl
- Short Review of RF Propagation
- Measurement Setup
- Results

Intelligent Vehicle Highway Systems (IVHS)

- Cars Will Travel In Platoons
- Cars Must Communicate To Other Platoon Members
- Communication Must Be *Extremely* Reliable!

Distortion in Wireless Channels

Primary Causes of Distortion:

- Path Loss Attenuation
- Small Scale Attenuation
 - Multipath Transmission
 - Time Variation

Multipath Transmission Leads To:

- Signal Variation Over the Frequency Domain
- Fading in the Time Domain at any given time instant
- Spreading of signal

Time Variation Leads To:

• Signal Variation Over the Time Domain

Path Loss Attenuation

Causes of Path Loss Attenuation:

- Free Space Loss
 - Received power decreases at rate d⁻²

Measurements of Path Loss from Other Researchers:

• Attenuation at Rate: $\sim d^{-n}$

d - *distance*

Received Signal Distribution

 $k^2 \le 1$

 $k^2 >> 1$ • *Rayleigh* Received Amplitude - y, f

$$f(y|\sigma^2) = \frac{y}{\sigma^2} \cdot e^{\frac{y^2}{2\sigma^2}}$$

• Parameters

- $k = \frac{\frac{1}{2}b^2}{\sigma^2}$ • Rician K-factor,
- Zeroth Order Bessel Function, $I_0(x) = \frac{1}{\pi} \int_{0}^{\pi} \exp(x \cos \phi) d\phi$
- $0.5(b)^2$ Power of strongest path
- σ^2 Power of other reflections

1st Moment of the Rician Distribution

$$E\rho_{m,i} = e^{-K/2} \sqrt{\frac{\pi}{2(K+1)}} \overline{p_{0,i}} \left[(1+K)I_0(\frac{K}{2}) + KI_1(\frac{K}{2}) \right]$$

Delay Spread, T_d

Delay Spread is due to transmission times of different paths:

Narrowband vs. Wideband Fading

Coherence Bandwidth,

$$(\Delta f)_c \approx \frac{1}{T_D}$$

Narrowband (Frequency Non-Selective) Fading

•
$$\mathbf{B}_{\mathrm{W}} \ll (\Delta f)_{\mathrm{c}} \approx \frac{1}{T_{\mathrm{D}}}$$

Wideband (Frequency Selective) Fading

•
$$\mathbf{B}_{\mathrm{W}} \ge (\Delta f)_{\mathrm{c}} \approx \frac{1}{T_{\mathrm{D}}}$$

• Intersymbol Interference

What Was Measured:

- Delay Spread
 - RMS Delay Spread
- Path Loss
- Rician K Factor

• DEC Portable PC with HP-IB Card

Transmission Parameters

• Transmit Power	+10 dBm
• Center Frequency	900 MHz
• Bandwidth	240 MHz

Derivation of Transmitted Bandwidth

Based On Time/Frequency Duality (DFT):

- Time Resolution = $T_R = 4.17$ ns
- Frequency Window = $F_W = (T_R)^{-1} = 240 \text{ MHz}$
- Frequency Resolution = $F_R = (801 \cdot T_R)^{-1} = 299 \text{ KHz}$
- Time Window = $T_W = (F_R)^{-1} = 3.34 \,\mu s$
- $T_W >> max(T_D) = 4.17 \text{ ns}$

Rician K Factors

- Typical Values in Range $\{5.0, 11.0\}$
- Extreme Values (high) { 17.6 }
- Extreme Values (low) { 1.38 }

Path Loss

* - Note that n is based on log-log data although graph shown is log-linear

Conclusions

• Path Loss	n = 2.36
• RMS Delay Spread	7.0 - 22.0 ns
• Rician K Factor	5.0 - 11.0

• 17.6, 1.38

References

- Bultitude, Robert J.C., "Measurement, Characterization and Modeling of Indoor 800/900 MHz Radio Channels for Digital Communications", IEEE Communications Magazine, Vol. 25, No. 6, June 1987, pp. 5 - 12.
- [2] Ganesh, R., Pahlavan, K., "Effects of Traffic and Local Movements on Multipath Characteristics of an Indoor Radio Channel", **Electronics Letters**, Vol. 26, No. 12, June 7,1990, pp. 810 812.
- [3] Hashemi, Homayoun, "The Indoor Radio Propagation Channel", **Proceedings of the IEEE**, Vol. 81, No. 7, July 1993, pp. 941 968.
- [4] Howard, S. & Pahlavan, K., "Doppler Spread Measurements of the Indoor Radio Channel", **Electronics Letters**, Vol. 26, No. 2, 1990, pp. 107-109.
- [5] Rappaport, Theodore S., "Characterization of UHF Multipath Radio Channels in Factory Buildings", IEEE Transactions on Antennas and Propagation, Vol. 37, No. 8, August 1989, pp. 1058 - 1069.
- [6] Saleh, A., Valenzuela, R., "A Statistical Model for Indoor Multipath Propagation", **IEEE Journal** on Selected Areas in Communications, Vol. SAC-5, No. 2, February 1987, pp. 128 - 137.