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ABSTRACT 
A digital watermark is a perceptually unobtrwive sig- 
nal embedded in some multimedia asset carrying ad- 
ditional information: e.g. copyright information of a 
video clip. For nearly all watermarking schemes pub- 
lished so far,  detection is based on some form of com- 
lation. I n  this paper, we show that the detection di- 
ability can be significantly improved by applying filter- 
ing prior to correlation. This improvement is analysed 
using a theoretical model based on statistical commu- 
nication and detection theory. Finally, the improve- 
ments predicted by the theory are verified in a number 
of experiments. 

1. INTRODUCTION 
Electronic watermarking is an enabling technology 

for the distribution of digital multimedia content. It 
aims at embedding additional data into clear content 
(images, audio etc) in a way that is difficult to remove 

Principal applications of electronic watermarks are 
in copyright enforcement, automatic metering and 
monitoring of asset usage in multi-media applications, 
piracy tracing, and in providing additional informa- 
tion, such as image captions. In many cases water- 
mark detection amounts to thresholding a correlation 
computation. A suspect signal (or an extraded set of 
features) is correlated with some pattern to obtain a 
correlation value. If this value is larger than a signal 
dependent threshold then the watermark is said to be 
present. Otherwise the watermark is said to be ab- 
sent. The pattern of absent and present watermark 
patterns carries the embedded information. 

Correlation detection is only optimal in the w e  
that the signal can be modelled as additive white 
Gaussian noise. In this paper a correlation detection 
receiver is proposed which includes prefltering to ob- 
tain optimum detection in the case of real images in 
which the power spectrum is not white. The analy- 
sis presented in this paper is based on the approach 

P, 2,3,41- 

presented in the paper [5]. Some experiments are de- 
scribed which verify the theoretical improvement of 
the watermark detection reliability. 

2. FORMULATION OF THE MODEL 
2.1. Introduction 

For the formulation of the theory, we consider two 
stochastical processes: W which generates watermarks 
and P which generates images. The watermarks and 
images have a size of Nl by N2 pixels with a total 
of N = N1N2 pixels. The intensity level of the pie1 
with coordinates n = (n1,n2), (0 5 n1 5 NI - l,O I 
n2 5 N2 - 1) is denoted as p(n) .  The set of all pixel 
coordinates is denoted as A. We restrict our discussion 
to gray scale images in which p(n)  takes on real or 
integer values in a certain interval. 

Whenever convenient we will represent p(n) as a 
z-expression p ( z )  defined by 

P ( Z )  = CP(n)z-n 
nEA 

= p(n)z;nlz;n* 
nEA 

We will assume that both stochastic processes W 
and P are wide-sense stationary and ergodic. By wide- 
sense stationarity the statistical kth moment 

becomes pkh) and the statistical autocorrelation 
function 

RP,P(% m) = E M n ) p ( m )  I 
becomes Rp,p (n -m) . The correlation only depends on 
the difference vector A = (AI, Az) = (n - m). By er- 
godicity we are allowed to approximate the statisticd 
kth moment &(P) by the spatial kth moment 
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and the statistical autocorrelation function Rp,p(A) 
by the spatial autocorrelation function 

where we assume n + A to wrap around. when it for- 
mally falls outside the set A. Note thitt we used a 
different notation to distinguish between the statisti- 
cal and spatial moments and correlations. 
2.2. Image Model 

first-order separable autocorrelation function [6] 
In this paper images are modelled b.7 assuming a 

where lAl = lAll+ 1A21. The standard deviation sp 
is defined as sg = mz(p) - mfCp). This assumption 
seems a crude approximation of the typical properties 
of images. However, from experiments such as those 
to be reported in Section 5, it appears that error rates 
based on this crude model can be reasonably mcu- 
rate for the purpose of this evaluation. This assump- 
tion excludes certain images, such as binitry images or 
computer-generated images with a limited number of 
colors. 

The quantities ml(p) and m2(p) ar~e referred to 
as the DC-component and the energy of the image 
p ,  respectively. The d u e  a cafl be interpreted as 
a measure of the correlation between adjacent pix- 
els in the image. Experiments reveal that t y p i d y  
a E. 0.8.. .0.99. 

0 the! autocorrela- 
tion approaches a Dirac distribution: 

It should be noted that for a 

( P , P ) ( N  = " + s ; w  

and the pixels become totally uncorrelated. We denote 
@(n) as the non-DC component of the image, that is 
ab) = Pb) - m b ) ,  so 

@,a) ( A )  = sgalAl. (1) 

In the following, we will always assume that in the 
watermark detector all signals have been processed by 
subtracting the DC-component such that e.g. 

$= p .  

2.3. Watermark Model 
A watermark w(n) is modelled as a sample image 

drawn from the stochastid process W which is oft'en 
implemented as a cryptographic process. 

The energy in a watermark w equals (w,w)(O) = 
m2(w) and is denoted as E(w).  In the following, we 
will always assume that the watermark 'w is DC-hee, 

W W 

Figure 1: Watermark Embedding and Correlation De- 
tection. 

i.e. ml(u)  = 0. Similarly as in the case of images we 
can write that: 

6 = 20. 

White watermarks reasonably model most of the early 
proposals for increasing and decreasing the pixel lu- 
minance according to a pseudo random process. The 
spatial autocorrelation function of a white watermark 
approaches the Dirac distribution when the image size 
is large enough: 

( W ,  4 ( A )  = E ( W ) W >  

Low-pass watermarks are generated by spatially filter- 
ing a white watermark source W with a first-order two 
dimensional spatial smoothing IIR filter So (z) , 

Such watermarks have been proposed amongst others 
in [4] because they are more robust against filtering 
and compression [7]. In this case the autocorrelation 
becomes: 

(w, W )  ( A )  = E(w)plAl (2) 

3. CORBBLATION DETECTION 
In Figure 1 the watermark embedding is depicted 

as 

r(n) = P(n> + 4 4  
Correlator detectors are a mathematical general- 

ization of the simple device in which watermarks with 
~ ( n )  E {- l ,O,+l}  are detected by computing the 
normalized sum of all pixel values in which the water- 
mark is negative, i.e., s- = & Cn:w(n+-l r(n) and 
the normalized sum of all pixel values in which the 
watermark is positive, i.e., s+ = & Cn:w(n)=l r(n).  
Then, d = s+ - s- is used as a decision variable, e.g. 

In the correlator detector, also illustrated in Figure 
1, a decision variable d is extracted from the received 
image r(n) by correlating with a locally stored copy 
of the watermark ~ ( n ) ,  i.e. 

d = d,(w) = (r,w)(O) 

PI. 

= d p  ('w) + d, (w). 
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This model covers all detectors in which the decision 
variable is a linear combination of pixel luminance Val- 
ues in the image. The Value d,(w), which is known 
to the detector is equal to the energy E(w)  of the 
watermark w. It should be noted that the expected 
value of dp(w) equals 0. Because of the Central Limit 
Theorem, dp(w) has a Gaussian distribution if N is 
sufficiently large and if the contributions in the sums 
are sufficiently independent. If we apply a threshold 

the probability of a false negative P- (the watermark 
is present, but the detector decides it is not) equals 
the probability of a false positive P+ (the watermark 
is not present, but the detector decides it is) 

P = P+= P- (3) 

The standard deviation of dp(w) is computed as: 

a:p(w) = E[ 01,4 1 

Using the image model of Equation 1 and a low-pass 
watermark given by Equation 2 we can write: 

The error rate goes into 

which in the case of a white watermark ,4? + 0 or in 
the m e  of an image with uncorrelated pixels a -+ 0 
becomes 

We see that correlation of the pixels (the case that 
a # 0) leads to a loss of reliability if the watermark has 
a low-pass spectrum. The use of a low-pass waterm&k 
also leads to a loss of reliability (the case that ,4? # 
0) if the pixels are correlated. However, such a low- 
pass watermark is less vulnerable to erasure by image 
processing [7], such as low-pass filtering (smoothing). 

t 
W W 

Figure 2: Correlation Detector comprising two 
whitening filters (left) and one filter (right). 

4. WHITENING 
From detection theory it follows that correlation 

detectors are optimum in the case of a Linear Time- 
Invariant (LTI), frequency non-dispersive, Additive 
White Gaussian Noise (AWGN) channel. However, 
this is not the case for real images where the pixels are 
correlated and the autocorrelation can be modelled by 
Equation 1. However, further applying standard de- 
tection theory, it is still possible to achieve optimum 
detection, in the case of non-white Gaussian noise, 
by applying a so-called whitening fi2ter at the input 
of the correlation receiver. This filter transforms the 
non-white input signal of the receiver to a signal with 
a constant power spectrum. Of course, also the water- 
mark signal has to be filtered in the same way before 
correlation, as indicated in Figure 2. If we apply the 
inverse first-order two dimensional spatial smoothing 
IIR filter Ga(z) = S;’(Z), 

GQ(z) = - (1 - azT1)(l - azTl), 1 - a2 
We find that p’(z) = G,(z)p(z) and w’(z) = 
Ga(z)w(z) such that 

Rv,pf (A)  = c$S(A). 

Similar as in Chapter 3 we can write: 

d,.t (w’) = (r’ ,  w’) (0) 

1 
- r(A)w”(A) 

A E A  

dp(w”) + dw(w”). 
Where we denote gL(A) = (gQ,gn)(A) and 

w”(n) = w(A)gd(n - A ) .  
A E A  
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This means that both filters Ga(z)  in Figure 2 can 
be replaced by one filter GL(z). For the deterministic 
quantity d,(w”) it follows that: 

d,(w”) = sh(A>(w,’w) (4. 
AEA 

Similarly, for the stochastic quantity dp~(wI1) it follows 
that: 

dPW’)  = gh.(A>(~>P)(Lu. 
AEA 

The expected value E[ dp(w”)] = 0 because we assume 
that the watermark source is DC-free. The standard 
deviation of dp(w”) is computed as: 

Using the image model from Equation 1 and a low-pass 
watermark as presented in Equation 2 this becomes: 

1’ - -( N 1-a2 

E(w)f7; 1 + a 2  - aap - 

and we find that: 

We can again apply the Central Limit Theorem and 
by setting a threshold &hr given by 

The error probability becomes: 

In the case of a = 0 this reduces to Equation 5. In 
the case of a white watermark (p = 0) the error rate 
becomes 

If we compare Equations 6 and 4 we see that due to 
the whitening process, the watermark energy has been 
amplified by an improvement 77 given by 

1 +a2 - 2ap -)2. 1 gap .=( 1-a2 1-ap 

For a white Watermark this simplifies to: 

1 +a’ 

5. COMPUTATIONAL AND 
EXPERIMENTAL RESULTS 

In our experiments, we approximated white water- 
marks through pseudo-random sequences. Non-white 
watermarks were generated using the smoothing filter 
of Section 2.3. We used the central 256 x 256 part of 
the image ”Lena” as depicted in Figure 4 to perform 
the experiments. For this image we found experimen- 
tally that a = 0.9. 

Figure 3 compares the theoretical results for the er- 
ror rate with measurements in the absence of a whiten- 
ing filter with a white watermark (’x’) and in the case 
of a whitening filter (a = 0.9) and a white watermark 
(’o’), a low-pass watermark with p = 0.3 (’*’) and a 
a low-pass watermark with p = 0.6 (’+’). We plotted 
the error rates as defined in Section 3 and Section 4 
versus the Signal to Noise Ratio (SNR) defined as 

The figure shows a good agreement between theory 
and experiments. 

6. CONCLUSIONS 
In this paper, we showed that the detection reli- 

ability can be significantly improved by applying fil- 
tering prior to correlation. These improvements were 
analysed using a theoretical model based on statisti- 
cal communication and detection theory. This model 
treats the original content (the image itself) as inter- 
ference noise in a communication channel. Finally, the 
improvements predicted by the theory were verified in 
a number of experiments. 
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Figure 3: Theoretical results (solid lines) and experi- 
ments for the error rate without whitening filter with 
a white watermark (’x’) and in the case of a whiten- 
ing filter with (Y = 0.9 for a white watermark (’o’), 
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low-pass watermark with ,6 = 0.6 (’+’). 

Figure 4: Part of the ’Lena’ image used in the exper- 
iments. 
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