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Abstract

The position of a mobile terminal has a significant influence on
its probability to capture the central receiver in the base station
of a cellular radio system using slotted ALOHA for multiple access.
Integral transforms of the probability density function for the
received power prove a useful tool for analysing the relation
between the spatial distributions of offered and throughput packet

traffic in a mobile radioc network with Rayleigh fading channels.

A newly developed method to obtain the spatial distribution of
throughput traffic from a prescribed spatial distribution of
offered traffic is presented and illustrated with examples.
Incoherent and coherent addition of interference signals is
considered. The channel behaviour for heavy traffic loads is
studied. In both the incoherent and coherent case, the spatial
distribution of offered traffic required to ensure a prescribed

spatially uniform throughput is synthesised numerically.

Linnartz, J.P.M.G.

SPATIAL DISTRIBUTION OF TRAFFIC IN A CELLULAR MOBILE DATA NETWORK.
Department of Electrical Engineering, Eindhoven University of
Technology (The Netherlands), 1987.
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1 INTRODUCTION TO CELLULAR DATA COMMUNICATION

1.1 Moblle data communication

Most of today's mobile radio systems offer analogue (speech)
communication facilities. However, in land-mobile radio, messages
are often short and stereotyped. Most user categories require
message lenghts of approximately 15 seconds, except in the taxi
service (with shorter messages—about 8 sec) and some services with
longer messages [21]- For many of these categories, 1ntroduction of
transmission of digital (non-voice) messages is a result of an
increased demand for mobile radio and the need to use the radio
spectrum more efficiently. Data messages can be sent more quickly
and reliably, with less operator involvement. For example, names
and addresses are notoriocusly difficult to receive correctly with
speech and usually involve the operator in repetitions and errors.
With data communication, new facilities are possible, such as
vehicle printers and automatic repetition of messages if the driver
has been away from the vehicle. Coding and processing of messages

become possible, too.
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Direct access to a control computer can enable a fleet of vehicles
to operate more efficiently [33]. Figure 1.1 gives an exanple of
the fleet management system of the Paris bus service RATP,
installed in 1974. Many mobile users are interested in data stored
in computer files. Radio communication has emerged as a flexible

method for providing remote terminal access to computers.
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Packet radie technology [22] [3] offers a highly efficient way of
sharing a wultiple access radio channel among a potentially large
number of mobile subscribers, for instance to support computer
communications or to provide local distribution of information.
Data from each user is buffered, address and control information is
added in a "header"”, and the resulting bit sequence, or "packet”,

is transmitted over the shared radioc chaunnel.

Although in many cases the more powerful facilities offered by data
systems may seem attractive, it is often difficult to make a real
case to justify the extra cost. However this picture is changing.as
an increasing number of users complain about congested channels and
so begin to experience a loss in efficiency while waiting for a

channel to become available.

1.2 Multiple access

In a moblle communication service with many users with "bursty”
messages, some kind of collision-type multiple access is
unavoidable. The call request and set-up signalling channel of a
mobile telephone service 1s a typical example of such a data
channel. Preller and Koch [20] reported on the MATS-E telephone
system, where one control channel is assigned to the base station
(BS) on which all functions emanating from (or directed toward) the
many mobile stations (MS's} in the cell are handled concurrently.
Digital dialogue initiation by a MS leads to one of the most

severe problems of control-channel design, because of the vast need
for access capacity to serve the randemly occuring, numerous and
different service functions initiated by MS's. Message collisions
can result in limited channel throughput, and simulation efforts
are used to optimise the access capacity.

Channel protocols for packet radio described by Sinha and Gupta
[22] reduce the collision problem by carrier-sense methods.

Basic properties of many multiple access schemes can be understood
by reducing the collision-type channel to its elementary form: the
ALOHA-system.



1.2.1 The ALOHA-system

The simplest possible solution to the multiple access problem is
employed. Each user transmits over the packet broadcasting channel
in a completely unsynchronised manner. All active terminals are
assumed to tramsmit their messages to a single receiver over a
common channel in packets of duration 1, regardless of the activity
of competing terminals. If each individual user of the common
channel is required to have a low activity, the probability of a
packet from one user interfering with a packet from another user is
small as long as the total number of users is not too large.

As the number of users increases, however, the number of packet
overlaps increases and the probability that a packet will be lost
due to an overlap also increases. In figure 1.2 we show a packet

broadcasting channel with two overlapping packets.

a1 1 00 f00 B Q@ A nn

Fy — time —a-

overlap
Packets pical .
from a ty user Packets from severa) users on an ALOHA channel.

Figure 1.2: Packets offered to the miltiple access chamel [3].

An unsuccessful packet will be retransmitted after waiting a random
period of time. The multiple-access system is memoryless, f.e., a
retransmitted packet experiences overlaps uncorrelated with its

previous attempts to capture the receiver.

Additional aspects of the ALOHA-system studied in this thesis are
slotted transmission of packets and the fact that a collision of

packets does not always lead to loss of all messages involved.

1.3 Slotted ALOHA and capture effect

In slotted ALOHA, the only network discipline imposed on
transmitters is that all dispatched packets must fit into common
timeslots of length 1. If messages conflict they will overlap
completely rather than partially. Compared with unslotted ALOHA,
this strategy thus yields an increased throughput of the channel

[3].



1.3.1 Channel throughput

Let the number of packets generated in the network be Poisson
distributed. The probability of an arbitrary test packet being
overlapped by n other packets is then [43]

Gn
R = = exp{-G}, (1.1)

n n!
with G the mean offered total channel traffic expressed in packets
per time slot. The pessimistic assumption made in studies of
standard ALOHA [44] networks is that any overlap of packets
invariably leads to mutual destruction of all nt+l packets present
in that slot. In this event the probability for a test packet to

capture the receiver becomes

P =R,=1- R . 1.2
capt 0 Zl n (1.2)

The total traffic throughput $ can be found from [3][44]

-G
S= GP_. = CGe, (1.3)

which is illustrated in figure 1.3.
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Figure 1.3: Throughput § as a function of the offered
traffic G for slotted ALOHA.

Metzner [2] has shown that intentional division of the users in two
categories: wusers transmitting at high power ("loud talkers™) and
users transmitting at low power ("quiet talkers™), increases the
capacity of the multiple access system, as a packet of a loud

talker survives a collision with packets from quiet talkers.
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Namislo [24] has studied the dynamic behaviour of an ALOHA multiple
access system where not all packets experlencing collisions are
lost, using a Markov chain model. He demonstrated that the
differences in received power between various packets (due to
fading and path loss), Increase chanmel capacity and that the
system can be very stable under overload. Kuperus and Arnbak [35]
studied the throughput properties of the mobile ALOHA channel with
the offered traffic distributed in a ecircular tape centered on the
base station receiver. Numerical results show that fading “softens”
the channel compared with the contentions of pure ALOHA. The
probability of destruction of a packet is modelled as the
probability that the signal to interference ratioc (SIR) exceeds a
certain Iimit [1] [13] [35].

1.3.2 Capture_effect

We shall assume a radio receiver which can be captured by a test
packet in the presence of n interfering packets, if the power of
the former (Ps) sufficiently exceeds the joint interference power
(Pn) during a certain section (the sync. window, of duration tw) of
the timeslot 1. Consequently, the test packet is considered
destroyed in the collision if (and only if)

P /P <z during t , with n > 0. (1.4)

As the statistic properties of the joint interference signal may
depend on the number of interferers n, the receiver threshold Zn
might alsc depend on n. In chapters 5 and 6 we will assume a
universal threshold (i.e., independent of n), which leads to

interesting conclusions for the spatial distribution of traffic.

Montomery [36] has given an analytic sclution for the performance
of a perfect demodulator if the interference behaves like band-

limited Gaussian noise.
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As the received power will be assumed constant at least during t,
typical values of the receiver threshold will be more optimistic
than in many reports on digital mobile communication where usually
fading of the signal during the capture period is assumed [39].
Literature on the characteristics of modulation techniques for data
communication and their thresholds has been summarised by Oetting
[40]. For large numbers of interferers, the resulting signal may
resemble band-limited Gaussian noise. The capture performance in
this case is illustrated for various modulation schemes in figure
b divided by the
interference spectral density Ny, assuming instant synchronisation

-4
(tw=0) and a capture criterion of an error rate of Pe <10 .

1.4 and expressed in the energy per bit E

WLED
TYPE MODULATION SCHEME RAPER H1l | EgMiy, lem)*
OOK - COMERENT DETECTION o8 128
COK - ENVELOPE DETECTION
AM
QAM 17 95
OPR 2. 17
FSK - NONCOMERENT DETECTION 08 g
a1
CP-FSK — COHERENT DE TECTION
@=.n
M
CF FSK ~ NONCOWEAENT DETECTION 10 0.7
td«
MSK {d = .5} 9 Y}
MSK — DIFFERENTIAL ENCODING [d * .5) 1.9 0.
8PSK - COHERENT DETECTION 0.8 9a
0 675K s us
oPSK on 108
arsx 19 - ”"
P
DOPSK 8 1.8
OKX-OPSK
8wy PSK - COHERENT DETECTION 26 20
16-ary PSK — COMERENT DETECTION 2. 17.2
AMPM | 16y APK n 14
* FOR BT EAROA RATE OF 104 o » ¥M MOOULATION INDE X

' CALCULATED FROM RESULTS FOR BFSK
** DISCAININATOR DETECTION

Figure 1.4: Performance of representative modulation schemes [40]-

The given Eb/NO rate can be transferred to signal interference
ratios by multiplying by R/W, where R the data rate and W the
bandwidth [40].



The receiver threshold becomes

R
Z,~ T - (1.5)

In this thesis, thermal noise effects will be neglected throughout,
corresponding to an "ideal”, interference-limited design of the
network. In practice, this ideal can be reached by raising all

transmit powers of the mobile terminals by a suitable gain factor.

1.4 Cell model

Spectrum efficiency is one of the most important aspects in modern
radio service planning. The increasing demand for more
communication facilities makes effective frequency reuse necessary.
Frequencies allocated to the service are reused in a regular
pattern of (usually hexagonal) areas called "cells". In figure 1.5
the cell structure for the Dutch radio telephone service at 150 and
450 MHz is depicted [42]. Cellular engineering has become an
important discipline of mobile radio system design. It combines
traffic engineering, interference management and spectrum
conservation [19][29]- Cellular mobile radio differs from previous
mobile radio designs in two critical areas: frequency reuse and

cell splitting.

With conventional mobile radio systems, the objective is to have
each fixed base station cover as large an area as possible by using
antennas mounted in high towers and the maximum affordable power.
A group of disjoint channels is assigned to the base station and
the system configuration does not change for the lifetime of the

system.

With cellular systems, the setrvice area is divided in a large
number of cells, each with its own base station. Power radiated by
the base stations is kept to a minimum and the antennas are located

just high enough to achieve the desired coverage.



These procedures enable non-adjacent cells to use the same set of

frequencies, which is the frequency reuse feature mentioned above

[26].

Figure 1.5 [42]:

Cell structure for the
Dutch radio telephone
service at 150 and 450 MHz.

As the demand for services increases, the number of channels
assigned to a cell will become insufficient to provide the required
grade of service. At this point, cell splitting can be used to
increase the number of customers that can be served in a given area
without increasing the number of available channels. This process
works by subdividing the congested cell into smaller cells (each
with its own base station), reducing the antenna height and trans-—

mitted power of the new base stations, and reusing the same

frequencies in some efficient pattern.



Gosling [23] described the lnterdependence between frequency reuse
distance and required protection ratio, considering only omne single
co-channel interferer. Digkoku and Ohdate obtained theoretical
results for optimal patterns for channel reuse [25]. Many cell
structures have been studied. Basic repetition patterns with four,
seven and twelve cells are often used [26]. A typical cell radius
in a small-cell system can be 3 to 5 km. Improvements can be
carried out by using directional antennas, so that cells can be
divided in (usually three or six) angular sectors. This makes reuse
patterns with only three or four cells possible and increases
spectrum efficiency. Reuse partitioning [30] is a technique used to
increase capacity. In practical environments with non—uniform data
traffic distributions and significant propagation impairments in
certain parts of the service area, optimal solutions lead to
tailor-made structures with cells of different size. Stocker [28]
deseribed the cell structure of the mobile telephone systems in
Chicago, Baltimore and Washington D.C., and Tokyo. Often, computer

aids have been developed using a topological database [31]-

In this thesis the spatial distribution of traffic inside one
individual cell will be studied. Initially this distribution will
be transformed into the probability density function of the
received packet power. The generally accepted propagation model,
based on field measurements, will be described in section 2.1 [10]

fri] [27] [39] [42]).

1.4.1  Attenuation law
The most general propagation aspect in cellular engineering is the
attenuation law, for the mean received power as a function of

distance.
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The area mean power of a packet received from a mobile terminal at

a distance r from the receiving base station is of the general form

[27]
P =a,r . (1.6)

The exponent B gives the path attenuation law for the channel
considered (2 < B < 5). In the event of UHF propagation in cellular
radio, a typical value is B=4. The rapid fluctuations of the

received power due to fading i1f the terminal is moved over small

distances are introduced in the model at a later stage. In the

event of ground-wave propagation without shadowing [11, (2.1~8)]

A
4 2 y2
o PTi GTi Gg HTi H2, (1.7)

where PT s GT and HT are the transmit power, antenna gain and
i i i

antenna height (above ground), respectively, of the mobile terminal
sending slot packet i. GR and HR are the gain and height above
ground of the base station antenna.

Figure 1.6: A circular

= / ceLlwiﬂxrmﬁus:;ax.
LA The mobile station MS
\\ = transmits a packet to
/// the base station BS from
N\ &= e a distance r.

If all mobile terminals are assumed identical, and if antennas with
omnidirectional radiation patterns in the horizontal plane are

used, we may take a, equal to any sultable normalising constant Oq
since the receiver capture is determined by a ratio (1.4) of signal

povwers.
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Take a, = rB where r is the radius of the cellular area in
0 max max

which the associated mobile terminals are expected to move. A

circular cell, centered on the base station BS, is depicted in

figure 1.6.

Although frequently used in mobile telephone systems, we do not
assume adaptive transmitter power control, except perhaps to remove
the shadowing effects not accounted for in this thesis. With these

assumptions, both power and distance in (1.6) are normalised as
P =p, (1.8)
with 0 < p <1, and §s 2 1 for mobile terminals inside the cell.

1.4.2 Spatial distribution of traffic

As distinct from [24], we do not assume a discrete number of users,
but use a continuous description: a traffic density per unit area
at a (normalised) distance p from the central receiver is defined
analogous to Abramson [3], Kuperus and Arnbak [35] and Arnbak and
Van Blitterswijk [1].

G(p)é offered packet traffic per normalised unit area at a

normalised distance p .

S(p)g throughput of (successful) packets sent from a

normalised unit area at a normalised distance p.

Both spatial distributions have the dimension packets per slot per
normalised unit area. Here as elsewhere, all distributions are
assumed stationary. Consequently, transition and set—up phenomena
and the behaviour of the channel in the event of instability cannot
be studied from this model. We assume the multiple~access channel
to be in equilibrium. In a typical communications environment both
distributions will usually be obtained as a time average of the
traffic distribution in the memoryless channel. Assuming packet
generation to be an ergodic process, in this thesis these
distributions will be applied to individual timeslots and thus

regarded as the ensemble average.
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Considering one circular cell, the total traffic offered to and

captured by the receiver, respectively, become

G= 2n Of G(p) pdp (1.9)
and S= 27 Of 5(p) pdp, (1.10)

expressed 1n packets per slot. (With k-sector cells, the factor 27

would have to be replaced by 2x/k).

The spatial distribution function for the random generation of

packets trying to access the base station considered

Fp(p)= Prob{the packet is generated within distance p}
27 e
= = G(x) xdx. (1.11)
¢ o

The corresponding pdf is
£ (p)= 2L c(p) o (1.12)
p G )

As packets transmitted from a normalised distance p are received

with a mean power ﬁs’ the pdf for the mean received packet power

can be found by applying (1.8)

- (5 =p By =
fPS(ps p ) fp(o)

= £.(0) e __ (1.13)

d
Pg

Using (1.12) and (1.13), from the traffic density G(p) the pdf

fﬁ(ss) of the mean power can be obtained as
s

B 2

y = AR E ), (1.14)

t5 (p =p
s
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1.5 Qutline of the thesis

In this thesis, relations between the spatial distributions G(p)
and S(p) will be established. As the receiver capture probability
1s expressed in terms of a power ratio, these spatial distributions
will be transformed to appropriate received power pdf's. In chapter
4, integral transforms will be applied to these pdf's to yield
mathematically more tractable equations. Given a certain distri-
bution of the offered traffie G(p), the throughput S(p) can be
formulated. This will be called "analysis” of the multiple access
channel. Conversely, “synthesis" gives the traffic load G(p) to be
offered, if the resulting throughput S(p) is prescribed. Both
methods will be presented in chapters 5 and 6, where incoherent and
coherent interference signals are considered, respectively. In
chapter 2 the communication properties of the assumed mobile common
radio channel will be described. In chapter 3, a discussion of the
objectives of this study will be given, and previous studies of the
relation between offered and throughput traffic distributions will

be summarised.
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2 PROPAGATION AND INTERFERENCE IN THE MOBILE CHANNEL

2.1 The mobile data radio channel

When the participants of a network are mobile, communication has to
be established under most adverse propagation conditions. A

microwave signal transmitted from a moving vehicle to a fixed base
station in a typical urban environment exhibits extreme variations

in both amplitude and apparent frequency.

Ryl
B AN

Figure 2.1: Multipath reception from a mobile station MS.

The generally accepted model of mobile radio propagation is based
on field experiments and involves three main aspects: path loss,
shadowing and multipath fading. The path loss is described in the
previous section by equation (1.8) and gives the mean received
power level, averaged over an area located at a normalised distance
p from the base station. This mean power level will be called the

area mean power.

The second aspect, shadowing (slow fading) of the radio signal by
bulldings and hills, leads to gradual changes of the local mean

received signal power as the vehicle moves.
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This local mean level, averaged over a distance of about 50 m is
found to vary with a lognormal distribution about the area mean
level. By lognormal is meant that the local mean expressed in dB is
normally distributed. The standard deviation ¢ depends on the
topography [&2]. This effect, however, is not considered in this
thesis, and so area mean power and local mean power are used
synonymously. The introduction of shadowing in the propagation

model is recommended (Rec. 2 in chapter 7) [10].

The third aspect, (rapid) fading, is caused by multipath
propagation (fig. 2.1), which causes the received signal level to
fluctuate rapidly as the vehicle moves along the street. The
envelope ri(t) of the received electrical field strength is
Rayleigh distributed.

Figure 2.2 [27]:
Signal envelope pdf
with Rayleigh fading
and shadowing.

Normalised wgnal level (inear)

Figure 2.2 gives the pdf of received signal envelope in a mobile
system with both Rayleigh fading and a certain degree ¢ of

shadowing.

In this thesis “(area) mean power ES" is used to indicate the
expectation value E[Pslp) of the instantaneous power Ps’ given the
distance p at which the test packet is transmitted. The mean power
thus stands for the (ensemble) mean value of the statistical

process of Rayleigh fading

[}
-1
.

o) = B2 [E,) = [ b, £ (2,15,)
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The unconditional mean power will be written explicitly as

A
W =

- é by — _ - -—
E(Ps)-of P, fps(ps) dp__-
With the "mean joint interference power"” of n packets, which will
be introduced later, we assume all n distances pj.. Py of the n

terminals contributing to the interference to be known.

2.1.1 The signal received from a mobile station

With a propagation model without shadowing, the pdf's of received
powers are now considered in detail. Given a normalised distance p
between base and mobile station, the pdf of the instantaneous
packet power PS will be exponentially distributed, with area mean

55 found from the attenuation law (1.8) [10][11], i.e.

p

- 1 s
fPS(pslpS) = = exp{- =} (2.1)

Py Py

and so
£ (py= Smax L o {—E}f— (p ) dp (2.2)
P Ps - P1™ 2 P Pg Pg :
s,min Py Pg

The signal of the i-th packet can be written as the real part of
= i + + 2'3
X ()= R, exp{ju t + 8 () + ¢ ()} (2.3)

The phase term Bi(t) is due to random carrier phase plus Doppler
shifts due to movements of the vehicle. Assuming phase modulation,
the baseband data of the i-th packet in the slot is carried by the

modulation angle wi(t).
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2.1.2 Constraints on packet length

During the capture of a packet, the amplitude Ri and the power Pi
are assumed to be constant with time. Consequently, the sync.
window duration tw has to be restricted, as can be studied from

Jakes [11].

3
05 0 W vs/c) Figure 2.3 [11]:

Normalised envelope

autocorrelation of
o 0s 1.0 15 20 the electrical field
4 cvs/ c —» strength.

The envelope ri(t) of the electrical field strength has the

autocorrelation

A
Rrgs) = E{r,(t) r (e4s)},

where s is the time difference between the sample points. Using the
equations [11, (1.3-12) to (1.3-16)], for signals at the frequency
of w, radians per second, this can be approximated with good

accuracy by

2 1 2
Eo [1+7 Jo (w, v s/e)], (2.4)

£l

Rrgs) =
i

o1

with c the speed of light, and Jp(.) the zero-order Bessel function
of the first kind. The electric field strength corresponding to the

area mean power is Ej. Removing the constant term in (2.4), one

obtains the covariance

- - 2
L(s) 4 E{[ri(t) - ri][ri(t+s) - ri)} = Rr (s) - T,
i
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This is directly proportional to JS(wcvs/c), which is depicted in
figure 2.3. From this figure it can be concluded that, in the 900
MHz band, with vehicle speeds of 20 m/sec (72 km/h), the recelved

power remalins nearly constant during the sync. window, if

3 108
Zm 900 10% 20

t < ¢/ w, v sec = 2.6 msec. (2.5)
Consequently one must restrict the distance d the vehicle may move
during the sync. window, to be smaller than a fraction of the

wavelength [39], say A/2w, thus

= 5 cm,

with A the wavelength (A=0.3 m). This result is in agreement with
the typical packet duration of about 1 msec proposed by Henry and
Glance [32]. Although the packet length t can be larger than tw’ it
is belleved that this constraint on packet length leads to shorter
packets than proposed by DaSilva et al.[34], where the packets are
assumed to be received correctly if (and only if) the whole packet
can be contained in a non—fade interval, i.e., the received signal
level may fluctuate but must remain above a fixed threshold,

determined by the modulation method and the background noise.

Recommendation 1

A study on the interdependence of the sync. window tw’ the packet
duration T and the modulation scheme and the threshold Zn,

and application of the results to the equations derived in this
thesis is recomended.

2.2 Interference signals

The total interference power Pn experienced by the receilver in a

particular sync. window is generally not the long-term mean Pn, but

an average taken over the (short) time interval .
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The joint interference power Pn of n packets is made up of n2

terms, namely

1 t °+tw n n *
P= I J ) X, (t) y xj(:) dt. (2.6)
S T Y | =1

2.2.1 Igcohesggt addition

In mobile cellular radio where packets are transmitted by many
different terminals without any mutual control of carrier signals,
the received signals add incoherently. In this event the phase
terms of the signals may vary sufficiently fast (e.g. due to
differences in carrier frequencies, Doppler shifts or modulation)

to assume all crossproducts to vanish. The joint interference

incoherent
power, Pn » now equals
n tgtt n
1 1 0w *
P= i ¢ J7ox) Xty de= ] P (2.7)
i=l "w ¢ i=1
0

From this equation, the mean joint interference power is found by
summing the individual area mean signal powers. The pdf of the

joint interference power is then the n-fold convolution of fP
8

{ *
f;n(pn> = fps(pn)} . (2.8)

The statistical behaviour of the joint interference signal depends
on the number of interferers. For n=l, the interference is a phase
modulated sine-wave signal, while for n+® the interference _
resembles [bandlimited] Gaussian noise. The latter follows from the
central limit theorem.

Boomars [14] reported on the pdf of incoherently interfering

signals from different cells, and demonstrated the dependence of

the interference pdf on the number of signals.
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2.2.2 Coherent addition

So far we have assumed incoherent addition of the received signals.
However, mathematical calculation shows [1] that the channel
throughput can be increased if the interfering signals would add
coherently during the packet. For example, in a state-of-art mobile
network, the individual mobile stations could slave their carrier
signal to some signal from the base station by means of a phase
locked loop, so coherent addition of interfering signals may become
more appropriate. If the phase terms Bi(t) and wi(t) remain nearly

constant during the capture time tw’ the ccherent sum
X= 3] X (2.9)

is also a Rayleigh phasor, with ensemble mean power given by

(2.7). Carrier phases may be random but remain constant during tw.
Achieving coherent addition puts even more emphasis on the
necessity to keep the packet duration 1 short, and also demands
tight control of carrier phase and frequency of packets transmitted
from distinct transmitters. Doppler shifts due to the movements of
vehicles make this control complicated. Furthermore the phase
modulation index needs to be small (wi(t) << 1).

In this (quasi-static) model, the pdf for Pi , given the mean power

ﬁn during the capture window, is the exponential distribution

p
- 1
f;n[PHIPn] = = exp{- Z}- (2.10)
pn pn

2.2.2.1 Coherent signals compared with one single interferer
In the coherent case, both the signal and interference power during
the packet are assumed to have (comparatively slow) Rayleigh fading

characteristics.

In fact, the model of Rayleigh fading for one moving terminal
assumes the addition of a large number of plane waves with random
amplitudes, phases and angles of departure [39]. This phenomenon is

illustrated in figure 2.1.
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As the distance d the transmitting vehicle moves during t, has
been restricted to be much smaller than A/2w, the fase shift ABi

» ]

of the j-th wave from transmitter 1 will be small [11]:

28, o < 2§d << 1 radian.
Figure 2.4 illustrates the case where these waves are generated by
a set of different but coherent transmitters. If none of the
vehicles moves more than A/2w, the fase shift of any of the
numerous plane waves from the n different transmitters will be
small (much less than one radian). The experienced shift is limited
to

i
- <

1, = 2A dmax << 1 radian,

where dmax the distance the fastest moving vehicle moves. Any

static spreading of carrier frequencies increases the phase shifts

between waves from different terminals. This effect is assumed

negligible.

Figure 2.4: Multipath signals from two coherent sources.
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It appears that the envelope of the resulting joint interference
signal of n coherent transmitters remains highly correlated if none
of the vehicles moves more than A/2n during t The coherent model,
assuming coherent reception of signals, thus may be interpreted as
adding extra paths to a multipath scenario with one transmitter, if
only the interfering carriers are transmitted with sufficient
stability within the sync. window t,. This "multi-multipath™ model

suggests that Doppler shifts need not always be corrected.

2.2.2.2 Pdf of joint mean coherent interference
The pdf of the ensemble mean interference power ﬁn is the n-fold

convelution of the pdf f; (ES) of the individual mean packet power
]

-

PS as given by (1.14):

f= (p £~ (3} 2

P () = [ f5 ) (2.12)
n s

Furthermore, removing the area mean power by integration of the

conditional pdf (2.10) analogous to (2.2), the unconditional pdf of

the coherent joint interference power becomes

o

71
fp () = OI 5 exp{- =2} £5 () ax (2.13)
n n

in which (2.12) can be substituted. In general, this equation
(2.13) differs from the result {2-8) for incoherent signals [1].
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3. LITERATURE ON SPATIAL DISTRIBUTIONS IN A CELLULAR AREA

As noted in section 1.4, in many papers optimum cell structures to
carry a given traffic distribution have been proposed. The spatial
distribution of traffic inside a cell, although affected by
unsuccesful attempts of transmitters to capture the base station,

received relatively little attention.

3.1 The critical circle model [3]

Abramson [3] described the capture probability for a packet
transmitted at a certain distance from the central receiver in the
base station. His model was very simple and straightforward,
ignoring all aspects of fading, shadowing and interference
addition. He assumed any packet transmitted at a distance p from
the central receiver to be lost if at least one other terminal
transmits a packet in the same time period from a distance less
than ap, with a a system constant. The circle with radius ap will
be called the “critical circle” for the test packet.

With this model mathematically tractable results were derived. The
throughput S(p) of a uniform distribution of offered traffic,
G(p)=Gy, was found to have a Gaussian shape: this will be confirmed
by caleculations with a more accurate model in this thesis. A
uniform throughput distribution S(p)=S, has been synthesised, by
finding the corresponding distribution of offered traffic G(p) in
the event of a perfect-capture receiver (a=1l). The shape of the

established distribution can be described mathematically as

So
A s —
G(p) = =5 /pc and Py = 1//2n8. (3.1)

The "Sisyphus distance” po, a singularity somewhat outside the cell
boundary (pU 2 1), is a distance beyond which no traffic offered

would ever capture the receiver in Abramson's model [3].
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3.2 Traffic distribution in ALOHA networks with fading channels

A perfection of the model, introducing Rayleigh fading and the
aspect of interference signal addition, has been presented by
Kuperus and Arnbak [35]- The importance of modelling the type of
signal addition (coherent or incoherent) has been underlined by
Arnbak and Van Blitterswi jk [1]. In the latter paper, the
throughput arising from traffic offered with the same mean power
for all terminals, and the throughput arising from traffic offered
with a quasi-~uniform spatial distribution over the cell, have been
analysed. Verhulst et al. [13] studied the channel capacity by
means of characteristic functions of the received power pdf of the

dispatched packets.

3.3 The image function approach

To study the relations between spatial distributions of offered qnd
throughput traffic in a cellular area, more powerful mathematical
tools are necessary than used in e.g. [1]. In this thesis, the
image function approach in [13] is extended and the characteristic
functions are interpreﬁed as integral transforms, describing the
spatial distribution of the traffic. These three equivalent manners
to describe the distribution of the traffic are illustrated in
figure 3.1.

distribvution of
Spatial distr area mean power image function g{v)

the traffic intenaity

Glo) Gyglv)

[ 1

rlist5n_c; P image variable v
Figure 3.1: The spatial distribution, the mean power pdf and its
image g(v), form three equivalent mamners to specify the
distribution of the traffic (to within a miltiplicative factor G
for the total traffic).
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In chapter 4, the images will be defined and thelr properties
described. In section 4.3, the capture probability will be
expressed 1n terms of image functions. Subsequently, expressions
for the traffic throughput of the mobile radic channel will be
derived from the appropriate pdf's of the packet power. By using
image functions of these pdf's, these expressions can be written in
a mathematically more convenient form. For iInstance, in coantrast
with [1], summing over the number of interferers will no longer be

necessary.

3.4 New methods and their application

To establish a relation between the distribution of the offered and
throughput traffic, we will distinguish the analysis and the
synthesis problem. An offered traffic distribution G(p) can be
analysed, giving the throughput distribution. If the offered
traffic is known, the statistical properties of the interference
are uniquely determined. This gives the capture propability and
thus the throughput.

OFFERED TRAFFIC a“ilz Sis THROUGHPUT TRAFFIC
G, G(p) * € € S, 8(p)
synthesis

Figure 3.2: Methods to derive the relation between
offered traffic and throughput traffic.

Conversely, the synthesis problem is much harder to solve
analytically. We are interested in the offered traffic if the
throughput is prescribed. This corresponds to the pratical
situation where a certailn amount of traffic, S, has to be
transferred to the base station. In this case both the offered
traffic distribution and the resulting interference have to be
found simultaneously from the throughput.

For both analysis and synthesis, the prescribed traffic and the

traffic to be obtained are shown in figure 3.2.
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Even in slotted ALOHA (1.3), finding the offered traffic G to
synthesise a certain throughput § from $=¢ exp{—G} can only be done
numerically. In this thesis, the relation between throughput and
offered traffic is more complicated than this exponential function.
Furthermore, beside the total traffic, we are also interested in

the spatial distribution.

Synthesis might be of interest to control the multiple access
channel. The control system can measure the instantaneous power of
the received packets, glving the spatial distribution of throughput
traffic. A method for this will be given in section 4.1 (see the
Taylor expansion (4.42) and figure 3.1). With this throughput
distribution, the offered traffic can be synthesised. In this way
indications of the saturation of the channel can be derived (or

predicted).

The aim of this thesis is to describe a newly developed analysis
method. From the capture propability in section 4.3, analysis
equations will be derived for incoherent and coherent addition.
Examples for specific distributions will be given. General
statements on the channel behaviour will be made; more
specifically, the behaviour of the mobile ALOHA-channel under high
traffic loads will be studied. Methods will be indicated to
synthesise the traffic to be offered if the throughput is
prescribed. Numerical synthesis results will be obtained for

constant throughput per unit area.

The way the analysis equations were originally derived during the
preparation of this thesis will be described in appendix C. In the
main body of the text, a more elegant and straightforward approach

is given.
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4. IMAGE FUNCTION EXPRESSION FOR THE CAPTURE PROBABILITY

4.1 Image functions of mean power pdf's

Similar to characteristic functions used by Verhulst et al. [13] to

calculate channel capacity, interpretation of these image functions

as Laplace transforms proves useful in finding spatial

distributions. The advantage of transformation is alseo observed in

[14]. The pdf of the jolnt Interference power is quite easy to find

from the pdf of the power of one single transmitter. The problem of

reverse transformations is avoided as the actual throughput

expressions can be written directly in terms of the image

functions. In the last part of this chapter, the receiver capture

probability is expressed in terms of image functions.

4.1.1 Laplace transformation

Initially, we will discuss several of the model aspects described

in the previous sections by using image functions. First we

introduce the Laplace transform pair

L B

g(v) «I » fﬁs(PS)-

Another notation used is

g(v) 2 L%{fi; ,V},
s

(4.1)

(4.2)

where g(v) is defined as the one-dimensional, one-sided image of

the mean power pdf f§
s

8 7 vy
glv)y = Of e f5 (y) dy.

s

(4.3)

The image g(v), together with the multiplicative factor G for the

total offered traffic, uniquely describes the spatial distribution

of the traffic offered to the channel from the mobile packet

transmitters.
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The defining integral in (4.3) converges [at least) for Re(v) > 0.

Moreover
|s)| < 8= 1 for Re(v) 2 0. (4.4)

From (4.3) it is also clear that the image and all even derivatives
of the lmage of a pdf of a positive random variable are real,
positive, and decreasing functions of their argument v along the
positive real axis (v>0), since all odd derivatives are negative

and increasing with v (v>0). For k a natural number and v>0:

0 < g(zk)(v) < g(Zk)(O) vw0 kel
(4-5)

g(2k+1)(0) < g(2k+l)(v) < 0 w0 k €N
Furthermore [5,(3.6)], 1lim g(v) =0 (4.6)

v

shows the image g(v) to vanish for real v tending to infinity. More
detailed information on the behaviour of Laplace images in the

limit v+« can been found in [5]. A summary of properties of the

Laplace transform can be found in appendix A. Furthermore, we refer

to [4][5][6][7.(29)].

figure 4.1: Examples of
image functions for

®l a ring model

@2 quasi—constant traffic
®3 a "belt"” traffic model
For v real, g{v) is also

2. real.

.28

T B 8

1.88

v, real axis —>
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4.1.2 Ebaracteristic functions

To gain more insight in the image functions, we also refer to the
theory of characteristic functions (cf) in statistical mathematics
[24}{15])[16]. The cf is the expectation of [exp{jvx}), with j the
imaginary unit v-1, i.e.,

X
max .

cf(v) SE(e) 2 [ PV g () ax. (4.7)

The ¢f is thus the Fourier transform of the pdf and can also be

written as a Laplace transform, namely, in our case

cfy (jv) = Of e VX f5 (x) dx 4 L{fﬁ v} & g(v). (4.8)
5 5 8

The k-th derivative of g{v) in the point v=0 equals (—l)k—times the

k-th moment yu,_ of the original pdf [15, p225]

k

= k
8000 = [ (0" 0 500 ax = (DM EG) & (DN o)
s

All image functions equal unity for v=0:

8(0) = ug = [ 5 (p)dp, = 1. (4.10)
s

The function g(v) can be obtained directly from the spatial distri-

bution of the offered traffic G(p) by substituting (1.14) in the
definition (4.3) of the image function g(v):

-] -

G g(v) = OI 210 G(p) e P dp. (4.11)

4.1.3  Examples

Three examples of possible image functions are shown in figure 4.1,
for real and positive v. The throughput of the first and second
distributions has been studied extensively in [1], while Fronczak
[17] obtained analytical and numerical results with the distribu-

tion of the third example.
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Example 1

Example

A spatial distribution with all mobile terminals transmitting from
a circular ring centered on the base station, can be modelled by

o - -
G(p) =3 &(pm1), or, equivalently G f5 (p)= G 8(p1). (4.12)
s

The corresponding image g(v) = e is found by Laplace
transformation of the latter and is exhibited in figure 4.1, curve
ol. The first derivative g'(v} equals -1 for v=0, corresponding to

a mean received signal power of E[SSJ = 1. The higher order moments

are all equal to unity, so the higher order central moments (about
the mean i) are all zero, which is in agreement with the fact that

a fluctuating behaviour is ruled out by the d—-distribution of mean
power.

In this example traffic distributed uniformly over the cell is
considered. Two distributions are considered. The first, a quasi-
constant distribution, yields an image with an simple analytical
form, while the second distribution of a truly uniform traffic has
a somewhat more complicated form.

A virtually constant traffic [1] in the area 0 < p < 1 modelled by
G Ty
G(p) = = exp{- 70"} (4.13)
has, if B=4, the mean power pdf (see (1.14))

13
B0y = 3P ew-—T1, (4.14)
s 4p
S
which has the transform [7,(29.3.82)]
g(v) = exp{-/nv}. (4.15)

As can also be seen from figure 4.1, the image go(v) has an
wunbounded derivative g'(0).

/r ~ne
g5(0) =°%—5“ R (4.16)
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According to (4.9), this indicates that the expectation value uy of
the received power is unbounded. The spatial distribkution G(p) has
norzero values for p arbitrarily close to zero. As shown by the
attenuation law (1.8), the received power from this area tends to
infinity. This phenomenon is responsible for the unboamded moments
uk. General statements on the rate of increase of moments will be
made in section 4.1.4.

Truly-constant:_offered_traffic

Beside this simple form of a quasi—constant distribution, a truly-
constant distribution is of interest. The image of this will now be
derived. To avoid unboumded moments we shall assume a mobile
station to be at a distance p of at least p, from the base

station:

G G
=+ = for py < p <p3
J 17 T (eFet)
Gp) = ; 0 lsewhere (4.17)

G, 1s introduced for convenience of notation. A constant throughput
for 0 < p <1 can be regarded as the limit for

pl + 0 arﬂ 02 + 1- (4.].8)

In this lmit G, +G. The derivative g'(v) can be found from
(4.1

Gg'(v) = 1%* f anl_B exp{-vp_ﬁ} dp. (4.19)

In the case B=4 this becomes

Py _
Ge'm= 6 [ eplw e, (4.20)
e
Substitution of vp‘49 A2 gives
P el )
Gg'(v) = — e d\ = [erf rf

Yv 02 Vv Eg E?

1

2 _2
using the error function erf(z) Q% 0'[ e tdt, described in
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[7,(7.11)] and [8,(8.250)]. The image function can be found by
integration and imposing the boundary condition g(«) =0, so

G g(v) = lim - } Gg'(M)dA = lim ~/n G, ?%[erf[‘“)—eff(“)] dx
e v . v 2
Substitution of vA 4 ylelds
lim " K K
G g(v) = o —/n G /{ erf(a%)ﬂerf(-‘;%) dx, (4.21)

vhich is given in [8,(5.41)]
2 2

4 P
= Lim - Y _ pz ~GP2 Yv 2 ~Vp3z
G g(v) - YT G [ Vg erf(;%) o + /v erf(a) +7;e
3 4 P _
+ erf(';%) +'F e Ployy erf(f%’) - e VPl ]

Inserting erf(«<) =1 , this yields the image fumction (4.22)

Cgv) =G [ /v {erf(g‘é] - erf(:—%v)} +p% e—vpj_ Y e-vp-l'a].

Taking the limit p;+0, and inserting p,=l, yields
G g(v) =G [~v erfe(/v) + ¢ '}, (4.23)

A
where erfe(z) =1 - erf(z). An unbounded derivative in w0 cannot
be avoided if py= 0.

A third case Is the exponential pdf

fl;S(Es> = ewl{p), (4-24)

corresponding to a spatial distribution of the form
=4
}

o) ==, emplv

s » (4.25)

where the traffic is concentrated in a circular belt near the ring
with radius p=} [17]. The image function

g3(v) =;}_'1‘ (4.26)
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is depicted in figure 4.1@3. The k-th derivative in v=0 yields the
k-th order moment of the pdf

%% = k. (4.27)

Uk =
Comparing g(.) with g3(.) in figure 4.1, we note that spreading
the distribution of received packet power around a constant pj
yields a larger image function (for p > Q). This agrees with the
increase of higher even order moments p 7% Formal statements on the
behaviour of image functions in the event of spreading the power
pdf about mean u, are believed to be of interest, but have not been
established as the odd moments put obstacles to the derivation.

4.1.4 Bounds on the moments uk

The above examples suggest that the moments p, of the mean power

pdf's may easily become infinite (ex.2) or ma: increase very
rapidly (ex.3: My % k!). The rate of increase of the moments as a
function of their order k is a great importance for the convergence
of series expansions which will be derived in chapter 6.

From (4.11) it follows that any distribution with non-zero traffic

G(p) = Gy for p+0, has unbounded moments Hieo since

e £
b= (1% F vy = J 2mpt 6 L) g, 5 oy goof ol %Ban,  (4.28)

where € is sufficiently small to assume G(p) to be constant. This
integral diverges for k > 1 if B8 > 2, a problem also indicated in
[13,(7)].

On the other hand, assuming all traffic to be generated beyond a
distance of at least e, with &€ a small number, we can prove the
moments to increase no faster than exponentially with k. Taking the

k=th derivative of g(v} in (4.11), we find the moments Hy» as

[amiT® EA gy (4.29)
£

W =
Inserting the inequality A>e, this can be bounded as

- * 1
< e F  m EA g o () (4.30)
€
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4.1.5 Interpretation of the image function

A second and less abstract interpretation of the image function
might be useful for intuitive assessments of results derived later.
The integral in (4.11) can be estimated by using the step

approximation

0 if p < B/v i.e. if vp_B is large
~ . " . (4.31)
1 if p > Vv i.e. if v is small

Thus, equation (4.20) now can be approximated as

o

G " g [ 2mp 6oy a0 26 -c_ (Proy, (4.32)
v

where we have introduced the critical traffic Ccr(p*)’ being the
total traffic generated inside a critical circle of radius p.
Thus, the image function g(v) can be approximated by the part of

the traffic generated outside the critical circle of radius Blv.

exp(-vF;ﬁ)
R R
) ) ‘V=1,ﬁ=4

Fig.4.2: The factor exp{~vp—3} can be interpreted as step function

The factor exp{-vpﬂﬂ} depicted in figure 4.2 is an increasing
function of p for real and positive v. When moving transmitters
closer to the base station, g(v) is reduced (if v>0). For real and
positive arguments v, 1t can be concluded that any distribution of
traffic within the cell with unity radius (0 < p < 1), will yield

an image function smaller than exp{-v},
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which is the image of the §-distribution with all transmitters
concentrated on the outer cell boundary. This bound is valid for
the truly-constant throughput of example 2, which can be seen from
(4.23), but not for the quasi-constant distrubution [see (4.15) or
figure 4.102]. In example 3, a very large part of all traffic is

generated outside the unity circle, and g3(v) l’exp{—v}.

If, in addition, one demands all terminals to be at a distance
greater than a small number € from the central receiver, the

following bounds are valid:
exp{—ve—s} < g(v) £ exp{—v}, for any real and positive v. (4.33)
Stronger bounds (e.g. g(v) > exp{-ulv}) probably exist, but have

not been found. The inequalities presented in [16, par 13.4] are

recommended as starting point for further study.

While g(v) is the image of the received power pdf of an individual
transmitter, we are also interested in the joint interference power
distribution. As stated before (in (2.7)], the ensemble mean

interference power ﬁn is the sum of n stochastic independent powers

Pi’ so the pdf of gn equals the n-fold convolution of the pdf of

Ps' Due to the properties of the Laplace transform, the n-th power

of g(v) then maps the image of the mean interference power pdf fp

n
(see (A.1.3)).

g <o g5 )™

= f5 (p)- (4.34)
s i

In the event of coherent addition, the Laplace transform of the
interference power pdf is found by applying the lemma of appendix A

(A.2.2) to the pdf of the coherent interference power (2.13).

1 A
We find L{f;n,v} =5 J exl- 3 g (1) di. (4.35)
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4.2 Image of the instantaneous power pdf

4.2.1 Definition_and _relation with other images

We also introduce an image function ¢(v), which is the Laplace

transform of the instantaneous packet power pdf fP (rather than
s
the transform of the area mean power pdf f§ )+ As distinct from
s
g(v), ¢(v) thus incorporates the effect of Rayleigh fading.

p(v)E of fPS(w) e dws= Ojof fPS(w|x)f§ (x) e ""dxdw. (4.36)

s

Here the effects of Rayleigh fading are contained in fP[pslgs),
s
which gives the conditional pdf of packet power PS, given an area

mean power Es dependant on p via the power attenuation law (1.8).

More explicitly we insert the exponential distribution (2.1)

@ 1
¢(v) = ofof ; expl- < ~wv} fl-,s(X) dx dw. (4.37)

Analogous to the derivation of (4.35), we find the image of the
instantaneous power pdf of a Rayleigh fading signal by applying the

lemma of appendix A (A.2.2). Thus the relation between fp and f; ’
s s
can be expressed in the Laplace v-domain as

p(v)= % Oj exp{ - %} g(d) di. (4.38)

As fading tends to spread out the pdf of received packet power, the
function ¢(v) is the image of a smoother pdf than is the case with

g(v). In agreement with this, the moments U of fP can be proved
S
to be substantially larger than the moments M, of f§ .
s

After substituting A/v & X in (4.38), one finds

$(v) = Of g(vx) e *dx  (if v # 0). (4.39)
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The k~th derivative of ¢$(v) now becomes

vy - 0[ e g kyy dx. (4.40)

In the limit v+0 and by applying [8,(3.351.3)], this becomes
s 0y = g® 0y J e ax =kt ¢ o). (4.41)

A formal proof of the existance of the limit is not given as the
same result can be obtained by comparing derivatives g(k)(O)
obtained from (4.11) and ¢(k)(0) from (4.44). The latter equation
will be obtained from the definition (4.36) of $(v), written in
terms of the spatial distribution of the offered traffic.

Equation (4.41) is a trivial result for k=0 and k=1, but shows that
higher order moments v of the instantaneous power pdf equal k!
times the higher order moments My of the mean power pdf.
Furthermore, we conclude that ¢(v), which at first glance might
appear only "an unfocussed picture” of g(v), uniquely specifies all
moments of the mean power pdf. Moreover, as seen via a Taylor
expansion of g(v), ¢(v) also uniquely specifies the spatial
distribution G(p) except the multiplicative factor of total traffic
G. [41,(Th 6.10.1)]:

k
k Uk(—v)

g(v) = b 2 - - . (4.42)
kEO ko K izo (kt)?

In practice this means that the spatial distribution of the
{offered) traffic can uniquely be found from the statistical
properties of the power of the individual packets. Rayleigh fadiﬁg

does not destroy the unique correspondance.

The definition of ¢(v) as an integral transform (4.36) can be
stated in terms of G(p) by inmserting (l.14)

¢(v)= f [ 2 2B exp[-(ABvyw] A gy go. (4.43)



- 38 -
Interchanging the order of integration, yields

® P sy
p(v)= | di. (4.44)
0 AB +v ©

Many of the properties of g(v) are valid also for ¢(v), e.g.
$(0) =1 and $'(v) <0 for v real and positive. (4.45)

Exaggle 4

As an example, we give the image ¢,(v) of the S—distribution in
example 1. Applying the sampling property to (4.44) yields

¢ l(v) = "]'.%;’ (ll -46)

which happens to be equal to g3(v) of example 3 in section 4.1.3.
Thus Rayleigh fading appears to spread the power pdf in the same
way as the spatial spreading of example 3.

4.2.2 Images of instantanegus interference power pdf's

The addition (2.7) of stochastic independent powers gives the pdf
of the incoherent joint interference power Pi (during each slot],
as the n—-fold convolution (2.8) of the instantaneous signal power

pdf fP . After Laplace transformation of fP this convolution
5 s
corresponds to the n-th power of the image function ¢(v)-.

"= 11 ({¢, )= Ll (0] 4 N £5 (e Vaw  (4.47)
] n n

The image ¢n(v) will prove very useful for the model corresponding

to incoherent addition of interferers.

4.3 Capture probability and spatial distribution

Corresponding to [1] we introduce the conditional probability of

loss for a packet, given the presence of n other packets:

o]
]

Prob{10551n,2n}. (4.48)
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Furthermore, the conditional probability of loss for a packet
transmitted from a normalised distance p, in the presence of n

other packets is defined as
I (p) & Prob{loss|n,Z ,p} (4.49)
z,n P S ] n)p . .

To derive expressions for F n and Iz n(p), we define the stochas-

tic variables [1, (15) to (20)] ’

P
z 4 8, 0<z<w (4.50)
p -—
n
A
and  w= p, 0<w<w (4-51)

We may write the two-dimensional pdf

a(p_,p.)
_-s""n’ I (4.52)

e 5 o k) |

s n a(z,w)

By virtue of the stochastic independence of PS and Pn, this becomes

for a given type of interference addition (index a)
£, w(ZoW) = fPS(zw) f;n(w) w, (4.53)

from which the pdf for =z

£ (2) = 0[ fPS(zw) f;n(w) wdw (6.54)

and the corresponding distribution function

z @
- a
F (2) = Oj dz of fPs(zw) an(w) wdw (4.55)

can be calculated.
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Distribution (4.55) gives the probability of satisfying the loss

condition of (1.4). The choice of f;(pn) is determined by the type
n
of addition (index a) assumed for the interfering signals. The

alternatives considered here are (2.8) for incoherent and (2.13}

for coherent addition. The pdf fP can be replaced by a suitable
s
conditional pdf if constraints are imposed on the test packet.

4.3.1 Capture probability

For the probability of packet loss (4.48), we maintain the uncondi-
tional fP

5

Z o

= n a
Fon = 0[ dz of fPS(zw) an(w) wdw (4.56)

Although the equation could be written in the form of a convolution
after Mellin transformation (Appendix C) from Zn to the image
domain, Laplace transformation yields a more useful result. In
Appendix C it will be shown that in the coherent case, probability
(4.56) can be written in terms of the image function g(v), namely,

as {(C.l4)

F = 1 + Of g“(znx) g'(A) dx. (4.57)

zZ,n

This probability is less than unity as the derivative g'(v), and

hence the integral, is negative {see (4.5)).

4.3.2 Capture probability conditioned on distance p

To obtain a similar expression for the conditional probability of

loss Iz n(p) we consider a test packet transmitted from the
»

normalised distance p, so the pdf of the mean packet power is the

§-distribution

test -
5 (p
S

oy = st (4.58)
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Introducing Rayleigh fading (2.2), we find the instantaneous packet

power pdf to be

-p _

f;est exp] Eﬁ} G(SS_D"B) dp, = oP exp{—pBPS}' (4.59)
s

oI} -

(v_|o)= |
0

s

Inserting this in distribution (4.55) gives

Z o
_ n test a
I, a(P= Of dz Oj fPs (zw|p) an(w) wdw, (4.60)
? T 8 B
n a
or 1 = dz p expl—~zw f w wdw. 4.61
@™ J" ax [ Pexpl-au®} €] o (4.61)
Integration over Zn yields
o [ [1- expl-z wof}] £2
I, .a(P= Of [1- exp{ z wo"}] fpn(w) dw. (4.62)

We divide this into two integrals. The first, being a pdf
integrated over its domain, equals unity, the second equals the

Laplace transform of the pdf in the image point v=anB.

- a _, B
Thus, Iz’n(p) = 1~1 {an, v=Z p 1, (4.63)

in which either the interference image (4.47) or (4.35) should be
inserted, depending on whether the interference adds incoherently
or coherently.

Rayleigh fading of the test packet signal is incorporated in
(4.63), while the fading of the interference signals is incorpo-
rated in (4.47) and (4.35). The Poisson character of the traffic
will be introduced later. The probability (4.63) thus applies
generally for any statistical behaviour of the traffic. It can for

instance also be used to analyse slow-frequency hopping CDMA [13].

Assume a test packet transmitted from a normalised distance p , and
S
one contender transmitting a packet in the same time slot from a
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normlised distance pi.Boﬂ1emxﬂiemx:umconxﬂataiRayhﬁgh
fading. The image function ¢i(v) of the received interference power
is
:
¢i(v) = — (4.64)

v-+p§

Using (4.63), the probability of loss of the test packet becomes

B
21 ps

I ()= —]/0

z,n''s g, B
Z +

lps pi

(4.65)

which is in agreement with a result by Diakoku and Ohdate
[25,p219].

The probability of packet loss can be found by summing the
conditional probability of loss Fz‘ over the number of interferers
n, weighted by the probability of n contenders in the same time
slot [1]. Considering Poisson distributed traffic [43], the
probability of being able to capture the receiver in an arbitrary

time slot is, using (1.1},

= 1-%R F (4.66)
capt n=

The total traffic throughput S is [1]

8=CP .= © {1 - nél R F 1. (4.67)

The channel throughput S(p) for the packets transmitted from a

distance p can be written similarly as

ste) = o) [1- E R I (o], (4.68)

n n

The standard slotted-ALOHA case can be found by inserting a
receiver threshocld which never allows capture for n>0 (Zn+M), 50

F =] and Iz =1. For finite receiver thresholds, overlaps will
H >
not always destroy all mt+l packets involved, so Fz n

, and Iz o may

)
be less than one.
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5 INCOHERENT ADDITION

5.1 Spatial distribution of traffic throughput.

In this chapter an analysis method for incoherent signals will be
derived. Main aspects of the "incoherent model” leading to this
equation are: the incoherent addition of interfering signals as
described in section 2.2.1, uncorrelated fading for all packets and

a universal receiver threshold, independent of the number of

interferers n.

In the special case of incoherent addition, the interference power

pdf needed in the conditional capture probability (4.63) is given
by (4.47). The conditional probability of packet loss IZ n(p)

]

bECOInES
z > n ) ( n ) * )

To find the spatial distribution of the traffic throughput we

insert Iz rl(p) of (5.1) in the throughput equation (4.68)
3

c"s"(z Py e

] (5.2)

-} Gn G o
S(p)= G(p)[1- ] Ty e + | m
n=l n=1 )
Interesting results can be obtained if we assume the receiver

threshold Zn to be no longer a function of n:
Zn 2 Zy for all n. {5.3)

Packets now capture the receiver if their power exceeds the joint
interference power, averaged over tw’ by at least a factor Zge The
receiver threshold is assumed to be independent of the statistical

behaviour of the interference signal.

Recommendation 1
Further study of the characteristics of the receiver threshold Zn
and application of the results in the throughput calculation, is
recommended [40].
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Series expansion of the exponential function [7,(4.2.1)] applied in
(5.2) gives

8(p)= G(p) exp{G¢(Zop")=G}. (5-4)

Using ¢(v) as given by (4.44) and writing the total traffic G as an

integral {1.9) gives

o B
S(p)= G(p) exp{- [ [1- ——2— ] 2m 6(x) dr}. (5.5)
0 A +Zgp
This can be written as
° A
S(p)= G(p) exp{ -Of wzo(E) 2nx G(X) dr}, (5.6)

which we shall call the incoherent analysis equation. We have

introduced the weighting function WZ (0 < wz < l]

W by 8 Zgo Zg 5.7
Zo'e AB4zg0P (%]B + 2

W1 is shown in figure 5.1. Various values of Z; correspond to
scaling the argument of the weighting function. It is believed that
the throughput for other propagation models can also be described
by (5.6), but with a distinct weighting function. The incohereat
analysis equation (5.6) is very useful for evaluating the spatial
traffic distribution, and several examples will be treated later in
this chapter. First, we give an interpretation of this result by
distinguishing two different roles of the offered traffic G(p) in
(5.6). This approach is also used in [2] and [3]. Assume the
(partial] traffic

Sp = Gp exP{_Gint}’ (5.8)
with G the [part of the) traffic being candidate to capture the
P

receiver and contribute to 5, while Gint is the traffic causing

harmful interference.
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The probability of being able to capture the receiver thus equals

int
equals the offered traffic weighted by wz and integrated over the

exp{—Gint}- We see in the analysis equation (5.6) that the G.
total area.

5.2 The critical circle model [3]

An approximation of Gi can be made by replacing the soft weighting

function by a step function:

A) 1 for Zop6 > AB
W [— - (5-10)
Zo'p 0 for ZopB < AB
AL . .
WI(E) is shown in figure 5.1.
3. DB

weighting

funition

w1(;)T

- - R .

. . * . . . .
L] - -

Figure 5.1: Weighting function in the incoherent analysis equation

We now find the simple throughput relation

ap A
S(p)= G(p) exp] —Of 21x G(x) dx}, with a = B/ZU, (5.11)

which will be called the critical circle analysis equation. This
result has been derived by Abramson in [3]. A factor 4 in his
formula [3,(36)] is due to his consideration of unslotted ALOHA.
His model assumes that a test packet transmitted at a distance o
can capture the receiver if no other packet is generated inside a
critical circle of radius ap (see fig. 5.2), whereas the
competition from one or more packet signals generated outside the
circle is not taken into account.

Extra interference, due to active terminals outside the critical
circle, introduces an influence of the traffic G{x) outside the

circle {(ap < x < =),
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Accordingly, the integral in our model (5.6) has its upper limit at
infinity, and Rayleigh fading changes the critical circle adopted

by Abramson into the softer transition region described by WZ[%) in

the incoherent analysis equation (5.6).

5.2.1 The critical circle model applied to perfect capture

As a special case of the critical surface model, we consider the
perfect-capture receiver with Zy=l, and thus a=l. Using integration

(1.10) with (5.6), the total throughput S5 becomes

% P
§ = OI 2np G(p) exp{—of 2nx G(x) dx} dp. (5.12)

A solution for the integrals can be found immediately if we

introduce the distribution function

He

F(p) of 2nh G(A) di, (5.13)

with F(0) = 0 and F(®)= G. We find

-] [+ -]

s= [ F'(p) exp{-F(p)} dp = -exp{-F(p)} = l-el (5.14)
o=0 p=0
In the event of unslotted ALOHA, using Abramson's version [3,(36)]

of the analysis equation, one finds a corresponding
S =%} - lexp{-2G}. (5.15)

According to equations (5.14) and (1.1), the perfect-capture
receiver accepts on average one packet in every slot occupied by at
least one packet. The packet selected will, with the critical
circle model, be the one transmitted from the terminal nearest to
the base station, as there is no contender in its critical region.
From this simple consideration we can conclude that the restriction
"on average” may here be replaced by "exactly”. In the limit G-,
we find 8_=1 for slotted ALOHA, and Sm=% for unslotted ALOHA.

Abramson [3] has given two particular examples of the latter

limit.
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For receiver thresholds near or below Z;=1, the traffic loads may
become relatively heavy before throughput losses due to collisions
start to play an important role. In this event the possibility of
more than one contender in the same slot will be relatively high

and addition of interfering signals can no longer be neglected.

The critical circle model is then believed to yield too optimistic
throughputs. As a striking example it will be shown that for
perfect capture (Zg=1L), S must equal zero (and not unity) for most

realistic spatial distributions.
- -

Figure 5.2: The critical
circle for a test packet
transmitted by the mobile
station M5 has the radius ap.

S
On the other hand, f;} high receiver thresholds (Zy>4), the fading

modelled in this thesis will significantly increase throughput
while the critical circle model is believed to yield too
pessimistic results. This will be confirmed in the examples of

synthesis in section 5.11.

5.2.2 Spatial distribution near the cell boundary

From the critical circle model, one can draw a qualitative
conclusion on the behaviour of the traffic distribution near the
boundary (p»>l) of the cell if non-perfect capture (Zg>1) is

assumed:

For non-perfect capture receiver thresholds (25 > 1) and for large

p (p * 1), the capture probability becomes independent of the
distance at which the test packet is transmitted, and the analysis

equation may be approximated with

$(p) = G(p) exp{-G}. (5.16)
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This means that the spatial distribution of the throughput traffic
has the same shape as the offered traffic, but is reduced by the
loss factor exp{-G} for standard ALOHA, where all packets
experiencing overlaps are lost. The main reason for this is the
cellular approach in this thesis. No traffic is generated outside
the unit circle. For p > 1/a, the integral in the critical circle
analysis equation (5.11) is taken over the entire cell surface, and
equals the total offered traffic G found from (1.9). For test
packets generated in this area, any interfering packet has a power

Pint high encugh to satisfy the loss condition (1.4):

Progy < aBPint, since P___ = o P ¢ af and P, 21 (5:17)
With the incoherent model, the above inequality is wvalid as far as
area mean powers are concerned. Rayleigh fading will make this
effect less pronounced.

The effect described by (5.16) will be confirmed by examples of
synthesis in section 5.11 using the critical circle model.

Appropriate examples using the incoherent model will be given in

sections 5.9 and 5.11.

We now consider several examples of spatial traffic distributions.

5.3 The ring model [l] [13].

In this example we assume all terminals to be located on the
circular ring with radius p=l. Thus, the packets are received with

the same mean power.
G
G(p) = 3, SCp~1) (5.18)

The sampling property of the 6—function applied in the analysis

equation (5.6) gives

Zg
S(p) = G(p) exp{—G(ZU+1]} {(5.19)
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and so, by using integrations (1.%) and (1.10) for total traffic,
Zp

S =G exp{—G(E;:T]}. (5.20)

The extremum of this throughput curve is found for

Zg+l Zg+l

and 85=
2y Zy

1
e (5.21)

which equals 2/e (0.76) in case of perfect capture (Z3 = 1).
Thus, if packet signals add incoherently, the effect of fading

simply gives an increase of channel capacity in slotted ALOHA by a
Zgtl

factor of .
Z9

This result has been derived by Verhulst et al. in [13]. Equations

(5.19) and (5.20) also describe the throughput if an adaptive power
control mechanism compensates for the path loss and shadowing, but
not for Rayleigh fading.

The total traffic throughput S tends to zero for G increasing. We
shall see in chapter 6 that in the coherent case, a spatial ring-
distribution of the traffic leads to non-zero throughput if G

increases without limit.

5.4 Homogeneous offered traffic

In this example we drop the idea of a cellular structure and assume

a traffic which is constant with distance.

[
]

G(p) = for any p > 0. (5.22)

?

The traffic offered within the unit circle (0 < p < 1) 1is Gg-
The total traffic G (found from (1.9)) is unbounded.

The traffic throughput can be found from the incoherent analysis

equation (5.6)

dx}. (5.23)
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The Gaussian shape of this spatial distribution, which has been

shown by Abramson [3,(42)], appears after substitution of

A 1
X = tp ZOL/B.

GG o
5(p) = - exp| -2Gg Z%/B pz [ Ldb (5.24)

The integral is solved in [8,(3.241.2)]

“o 2/8

s(p)= = exp{ - % LA 0 p2 cosec 2%} (5.25)

B

In the event of the propagation law B=4 we find

0

A1 @

S(p)= exp{ - %GU Yig pz}, (5.26)

which is depicted in figure 5.3 for different traffic loads Gy

\ G,.=10 packets per slot
in unit circle

per area
—
bt

Figure 5.3:
Throughput S(p) (in packets
per slot and per area] of a
uniform offered traffic

distribution. ‘

Traffic throughput s(p )

normalised distance E!

Although the total offered traffic G is unbounded for any Gg, the
total traffic throughput does not tend to zero by collision

effects.

2 0.64 '
= — - > . . a9
v 7o for any Gy 0 (5-27)

[~ -]

S = 0[ 2mp S(p) dp =
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Recommendation 2.1

5.4.2

In a well-functioning multiple access system, one may demand the

If a weighting factor w;(v] exists for other propagation models,
the Gaussian shape will naw be shown to apply also for these
models. The propagation model must at least contain the
attenuation law (1.8) for area mean power.

Assuming a constant G(p) = GO/w, substitution of the integration
variable A & vp ylelds

S(p) = %0 exp{-pz %U Oj Wz(\)) 2wy du}. (5.28)

This clearly demonstrates the Gaussian shape of the throughput
distribution. Convergence of the integral can be studied from

lim 1
integral = e | W(v) 2mv dv. (5.29)
me €

The integral converges for €+ as the weighting function is less
than unity, while the convergence for large n is guaranteed if the
weighting function decreases more rapidly than inversely
proporitional with the square of its arpument v.

Derivation of the throughput for Riclan fading and/or shadawing is
recomrended.

Success rate

average probabllity of capture within a range of transmitter

distances {0 < p < 1), to be larger than a minimum value g- The

parameter q (0 < q < 1) is called the "minimum succes rate”.

In the event of homogeneous offered traffic,

P{succeslp} = S$Ce) | exp{- I Gg 7/2q 02} > q- (5.30)
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So, to meet the specification, the total offered traffic G; inside

the cell with unity radius must be bounded by

2 1n
Gy < -;-7?% = 60 nax" (5.31)

This is depicted in figure 5.4, where the maximum permitted traffic
Gy is given as a function of the minimum succes rate g, with

receiver threshold Z; as a parameter.

e

0.8
0.6
Ok

0.2

Maximum traffic Go.nax

0.0

minimum succes rate gq

Figure 5.4: The maximm traffic load G max inside the unit circle

expressed in packets per slot as a function of the minimm succes
rate q.

Traffic generated outside the unit circle does not necessarily meet
the minimum succes-rate specification. In a practical situation

this extra—cellular traffic can represent interference from other

cells.

5.5 Behaviour under heavy traffic loads.

Throughput equation (5.27) states that S, remains finite even for
Gg+~. However, a weak point in the physical modelling of the
previous example is the convenient mathematical assumption that
packets can be transmitted from distances arbitrarily close to the
base station, and thus, according to the attenuation law of (1.8),

are received with arbitrarily high mean power Es'
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We assume the results (5.25), (5.27) and (5.31) valid if the amount
of traffic G€ contributed by terminals located very close (p < g <<

1) to the receiver is relatively small, i.e., if
GE << 8. (5.32)

In this case the influence of Ge to both candidate traffic Gp and
interfering traffic Gint in (5.8) 1is negligible. To satisfy this
condition in the example of uniform offered traffic, the maximum

traffic load has to be bounded by

g? 0.64
Ll Gy <K m-. (5.33)

Inserting typical values Z,=10 and €=0.01, the traffic G offered
inside the unity circle can be increased to more than one thousand
packets per slot before (5.33) is violated. If (5.33) is satisfied,
we may conclude that packets need not have unlimited power to
capture the recelver. Two possible models to cope with the case
that the offered traffic exceeds this bound are either l) to keep
the received mean power constant with distance for transmitters
close to the base station (p < €], €] small but comstant), or 2) to
prevent terminals from being closer than & minimum distance €y to

the receiving base station.
Ad 1] This model, suggested in [13], can be regarded as a further
elaboration of the propagation power law of (1.8), but the unique

correspondance between G(p) and Gg(v) must then he dropped.

In terms of a traffic distribution we can model this with the

spatial distribution
Go
G(p) = €% Gy 8(p-e1) + =0 U(p-ey), (5.34)

with U(.) the unit step function.
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In contrast to the previocus result (5.27), the throughput now has
the behaviour of a ring model with the traffic on the ring
increasing without limit (€%G0+W)- As shown in (5.19) this has zero
throughput Sw. Additional interference by the traffic GOU(p—sl) can
only decrease the capture probability. Consequently, the throughput
of packets from the ring and further away tends to zero. The

channel has zero throughput if Gg+=.

Ad 2) Under this realistic assumption we do not allow mobile

stations "to climb up the base station tower”. The spatial
distribution of offered traffic is simply

G(p) = 20 up-ey). (5-35)

In a small-cell network with a cell radius rmax = 5 km and an
antenna height HR = 50 meter, €, will indeed be in the order of

0.01.

In the discrete Markov-chain model presented by Namislo, the limit
S, greater than zero is no longer achievable if the received power
is bounded [24,p588]. With the above model we find a similar result
which states that the throughput limit §_ has to be zero. However,
it is believed that the offered traffic G has to be raised to
extreme values before the channel is completely destroyed by mutual

collisions.

5.6 Traffic distributed in a circular band

In this example we deal with spatial distributions constrained by
the condition that all traffic is concentrated in a circular band.
Thus, the offered traffic per unit area G(p) is zero for p < p, and
p > pp» The contributing cell now has inner and outer boundaries

pi and po.
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In this case, the total traffic throughput S theoretically tends to
zero, if the total offered traffic increases without limit. This

can be concluded from the observation that

"'ZoG

(18+ ZO

S < G exp{ b, with a = =2, (5.36)

We prove this result by inserting the analysis equation (5.6) in

the integral (1.10) and bounding the resulting S. The integral

P2 P2 A
s = [ 2mp Go) exp{~- [ W, (5) 2mk G(A) dr} dp (5.37)
0
P1 Pl

can be overbounded by inserting the most favourable value in the

welghting function wz. By doing so, one finds

P2 ~Zyg
5 < 6 exp{—wzo(EIJ G} = @ exp{u8+z G}. {5.38)
0

This result can be understood by the (physically unrealistic]
insertion in the analysis equation (5.6), interpreted as (5.8), of
the traffic Gp as if it were concentrated at p; (strong candida-
tes), and the traffic in Gint as if it were concentrated at (o35S
(weak interference). Stronger bounds appear to be possible, but the

desired conclusion can be drawn from this result.

An implication of the bound (5.36) is that achieving a non-zero
throughput limit S, will be possible only by assuming p1 to be zero
or by assuming p, to tend to infinity. The former can lead to
infinitely strong received packet signals, while the latter allows
the ineffective traffic by terminals far outside the cell to be

unbounded without catastrophic results for the traffic closer by.

However, with typical cellular distributions (py=e~0.01 and py=1),
the bound (5.36) becomes

$ <G exp{-10_8ZOG}, (5.39)

so it no longer is a practical problem, even for aigh G.
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This is in agreement with observations by Namislo [24], who stated
that the mobile slotted ALOHA radio network will remain very stable
under overload: only for very large numbers of contenders the
throughput will eventually tend to zero ("graceful degradation”).

This 1is in sharp contrast to the situation in pure slotted ALOHA.

Recommendation 3

Formal statements on the throughput behaviour under large traffic
loads might be obtained by inserting the intermediate result (5.4)
in the integral for total throughput traffic (1.10) and applying
the asymptotic expansion for Laplace integrals [38].

5.7 Offered traffic distributed homogeneously in a circular band

In this example we assume an offered traffic distributed uniformly

with intensity Gy per unit area between radii p, and py.

G 4G
kil

= =% (p; < p < p2)
7 (p2-p2)
2 1

G(p) (5.40)

0 elsewhere

The parameter G, is introduced for convenience of notation. The

traffic throughput now becomes

G p Zapt dA2
* 2 0
s(p) = = exp{-G, [ T T gt }- (5.41)

A=Dl

After solving the iategral and using [8,(1.625.9)] to substract

both arctan terms, we find

G, Y2y 02(p5-p))
S(p) = 3 exp{- v¥Zg p2 G, arctan( TZer" + 57 5% M} (5.42)

Inserting po=1 and taking the limit p;+0 (thus G=G_ ), the
throughput distribution from a homogeneous ocffered traffic within

the cell is found on the form

S(p) = g exp| -vZgy p2 G arctan(%zJ]. (5.43)
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For a minimum succes rate q, the total traffic G offered in the

unity cell must be bounded by
-4 1n
¢ <= 75;& , (5.44)
which is twice the nmaximum allowed traffic in the event of uniform

spatial distribution (with infinite extension (5.27)).

5.8 Offered traffic increasing linearly with distance

We next assume unbounded traffic with the spatial distribution

6(p)= 53 P Go, for any p > 0. (5.43)

The traffie transmitted from inside the unit circle is Go-

Assuming B=4, we find a traffic throughput of

S(p)= 52 p Gg exp{ -3Gy 0] PRrTavs di}. (5.46)

We substitute A £ t p %2 . The integral is (8,(3.241.2) ]

3 3 3/4 3 3
S(e)= 57 P Go exp{ - ZT Go ZO/ P~ cosec zw } (5.47)

The total traffic¢ throughput 8 now equals, using (1.10),

o«

Sy = Of Gg exp{ - %n Gy p3 Zg/a cosec gg } dp3 (5.48)

2 - -3/4

Eﬁé 203/4 = 0.300 203/ for any Gy > 0. (5-49)
A perfect-capture receiver will be captured by an average of about
0.300 packets per timeslot, independent of the intensity of
traffic. We have thus obtained a constant throughput, independent
of the offered traffic per unit area (the dependence on the total

traffic G is indefinite as G is infinite for any G0>0J.
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In the above result, only a fraction Se’ with

E

£
s, & J 2w s(e) dp < [ 2mp G(p)dp = &2 Gy, (5.50)

is contributed by traffic offered inside a small circle of radius
€. This traffic is received with unacceptable high packet power.
We may assume the result valid if Sa << 8, i.e. for
0.300 _-3/4
Go << =27 Zo / ) (5.51)

which will normally be the case in practical situations.

5.9 Offered traffic increasing quadraticly with distance

p? % G for p <1
G(p) = (5.52)
0 for p > 1

The throughput distribution becomes

1
2 2 4 4ix3
S(p) =% 0" Gexpl 629 p OI ;;;gggn dx |} (5.53)
1+ZO;)‘+
= g pz G exp{ —G2094 ln[ '_—rzop ] }

1 ]""G Zopq.

= G(p) [ 1 +m (5.54)

Examples of this spatial distribution have been computed and are
illustrated in the three figures 5.5, 5.6 and 5.7. The independent
variable is p (0<p<l). In the first figure the offered traffiec G is
fixed at an average of one packet per slot; the channel is below
saturation. The spatial distribution of the offered tratfic G{p) is
also given in this figure, as it has the same dimension as S{p):
packets per slot per unit area. G(p) can be Interpreted as S(p) for

the special receiver that is captured by all packets regardless of

overlap (2,=0).
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Figure 5.5 shows that the influence of Zy (1 < Z5 < 10) is not very

large if the channel is below satuvation. This can be noted also in

the throughput relation for total traffic, given In figure 5.8.

In the next figure (5.6), S(p) is given
receiver (Zg=l), when the total traffic
steps (G=1 + 2 + & + 10). The quadratic

clear for small p, but for larger p the

figure 5.5: Quadratic

offered traffic throughput
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shape of the curves is

effect of loss due to

collisions becomes significant. With a total traffic approaching

the average of 10 packets per timeslot, the packet throughput from

the boundary (p = 1) of the cell tends to zero, even though the

traffic offered from this region is very large.

Throughput per arec Sip |

In figure 5.7, the throughput curves are given for a radio receiver

with threshold Zy=4 (6dB). For terminals close to the base station
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Figure 5.6: Quadratic offered
traffic throughput by a Zy=1
receiver with total traffic G
as a parameter.

Figure 5.7: Quadratic offered
traffic throughput by a Zy=
receiver with total traffic G
as a parameter.
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(p < 0.2), the throughput figures do not show much difference from
the previous case where Zg=l. For more distant terminals the
saturation effect becomes evident far earlier, and the increase
with distance of the traffic throughput is weakened. In some cases
(G>2), the curve even decreases with distance.

For terminals near the boundary of the cell (p+l) and for Z,=4, we
recognise the saturation effect described by (5.16). The numerical

value of the loss factor in (5.54)

L S20® L

)—48
Zop!“

~ (2.44)'G (5.55)

£ lw;

[ 1+

approaches the limit of e—G [7,(4.2.21)]. In this region, nearly
all packets experiencing overlaps are lost. Thus, for larger G (2 <
G < 4), we see another increase with p, caused by G(p), of the
throughput S(p). Combining these opposite effects the throughput
curve becomes quite constant in the area 0.3 < p < 1, especially

for a traffic load of G = 3 packets per slot.

For higher traffic loads (G>3), the throughput of packets
transmitted relatively far from the base station drops quickly due
to collisions. Compared with this, the increase of the throughput
of packets from terminals close to the central receiver is

relatively small.

0 1 2 3 a s

\ T T =T T T T T T 1

9t 4.9
v B Z5= 1-8

T—

ak /‘_“ \ B 7
e - _2
S ~ .6
c T8 g=h 1°
(o2 EEL N / —~ 0 \\\: 4
3 .3 2= . " 1., Figure 5.8: Total throughput S
L -2 f \\\\\\“ 4.2 as a function of the offered
L T
— ! l . N traffic G for various receiver

] 1 1 1 L i 1 1 o

0 1 ? 3 4 5 thresholds ZO‘
Cirerad teart e o

In this comparison it should be remembered that in the integral for

S (1.10), the throughput per unit area S(p) is weighted with pdp.
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As a result, the total traffic S is believed to tend to zero for G
increasing without limit. The total throughput S is depicted in
figure 5.8 as a function of the offered traffic G. As previously
noted the influence of the receiver threshold Z, becomes more
significant, when the total traffic G increases towards saturation

of the channel.

Recommendation 3.1

The S versus G relation giving the throughput, can be assessed by
inserting S(p) in (1.10). A numerical value of the limit § has not
been found (see recomrendation 3 in section 5.6). We find bounds
for S using [7,(4.:2.36)]

- ! 1__=GZgo" ' 1 0
_ oP
GeT< s=cf[1 +7%) o' < G [ eplzzat @,

A
with y = p* substituted. Tt can be shawn by using the asymptotic
expansion for Laplace integrals [38] that this bound only yields
0<8 < 1/Z,-

5.10 Synthesis methods

In our analysis so far, the traffic 6{(p) offered to the channel was
assumed to be known. From this the traffic throughput could be
calculated. In most practical communications environments, however,
a certain transfer of data S has to be guaranteed at the receiver.
Packets lost in collisions do not contribute to S and have to be
retransmitted. Thus we must address the problem of synthesis of a
distribution of G(p) resulting in a specified S(p), taking account

of these retransmissions.

5.10.1 Numerical method of increasing sample distance p

In the critical circle model, the special case of uniform
throughput has been derived for the perfect—capture receiver in
[3]. In this event (Z)=1), the critical circle has a radius equal
to the distance Prest traversed by the test packet, so a method to

calculate the offered traffic required to achieve any prescribed
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throughput S(p) can be obtained from (5.8). The competing traffic

Gint is derived by integrating G(p) for traffic originating closer

to the base station:

p

Gip = Uj 27A G(X) dA. (5.56)

As it is illustrated in figure 5.9, from G and S(p), the traffic

int

G to be offered from the normalised distance ptest can be found as

6(p) = S(p) exp{G | (5.57)

This numerical synthesis approach starts near the base station

(p=0), where G(0) equals S{(0). By increasing Prast step by step,

the traffic to be offered can be found for any distance p (0<p<l).

Figure 5.9: Illustration
of a mmerical synthesis

~ 1 method using the critical

& . circle model for perfect

s 1 | capture.

i dE

E B N exp{+Gint}

2 1[TT] !

E 3 G int :KGP The sample distance p is

b to be increased step by step.
MEREENN L
distance [0 — Steyphue

This method can only be used for Zg<l: for higher receiver thres-
holds the required traffic G(p) for p larger than Prast has to be

known before it can be calculated.

Abramson derived the analytic solution (3.1) for a uniform through-

put Sg and perfect capture {Zy=1).



- 63 -

5.10.2 Iterative numerical method

A general explicit solutien for G{p)}, given S(p), has not bheen
found, neither with the critical circle model nor with the
incoherent model. However, the analysis equation (5.6) is amendable

to iterative numerical solution, by rewriting it in the form

oo

A
G 41 (P)= S(p) expl+ of wz(a) 2mA G (M) drl, (5.58)

where S(p) 1s a prescribed (desired) traffic throughput. Using the
i-th trial version Gi(p), the next (and hopefully better) estimate
Gi+1(p) can be found.

A simple choice of the starting function is taking Gp(p) equal to
the desired throughput density S{p). In general, it can be stated
that 1f the starting function satisfies

0 < Go(p) < G(p) for all p, (5.59)

then all estimates Gi(p) have values between S{(p) and the solution

G(p). This can be proved by induction, as follows:

The lower bound i1s based on the simple recognition that all
estimates are greater than S{p) for any p, as the integrand in

(5.58) is non—negative. The upper bound is derived from the
induction step that

if Gi(p) < G(p), then Gi+1 < G(p), (5.60)

which follows from
A
R CONERICY exp{ [ wz(a] 2mi G, (X) da}

< S(p) exp{ [ wz[g) 2rA G(x) da} = G(p).
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An immediate consequence of (5.59) is that a bounded solution G(p)
can not exist if the sequence of estimates Gi(p) diverges. However,
in practice this observation is of limited value, as it does not
consider the numerical (quantisation) problems of digital

computing, which may also be the cause of divergent steps.

5.10.2.1 The computer program

A synthesls computer program has been written to find G(p), given
S(p). It has been applied to both the critical éircle and the
incoherent model. A very appropriate case is uniform traffic
throughput: we assume S(p) to be constant within the circular cell

of normalised radius p=l, i.e.

Al

0D <p <1 7
S(p)= (5.61)

0 elsewhere

So=

The spatial distributions are sampled in N points (typical values
are between 10 and 50). The iteration is terminated when the
integrated relative changes ER in the distribution G(p) drops below
"a certain threshold (e.g; IO_Q = 0.01%)

Gi+1(p)-Gi(p)
i+l 0 G, (p)

i
— 8

ER

dp < THRESHOLD. (5.62)

The maximum number of iterations is limited to M. The total offered
traffic G (found from (1.9)) is monitored to indicate possible
divergence of the equation. The starting function Gy(p) is taken

equal to S5(p). Convergence is quick (ER << ERi) as long as the

i+1
channel is well below saturation: only four or five iterations are
needed. With higher traffic loads the convergence becomes slower.

Numerical results will be presented in section 5.11%.
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5.10.2-2  Simulation of the dynamic behaviour of the channel

The rate and the manner of convergence have a very useful practical
-G

interpretation. In the standard ALOHA equation § =G e , we may

distinguish two roles of the offered traffic, namely the candidate

and the interference role of the traffic variable G, described by

equation (5.8). In our iterations:

1

& g W, () 2m0 ¢ (1) ax. (5.63)

4
Gp = Gi+1(p) and Ginc o

In a quasi-static description, assume the momentary value at

instant i of interference to be Gint' To achieve a throughput §

certalin number of packets has to be retransmitted resulting in the

y &
P
offered traffic load
G = sp exp{—Gint}. (5.64)

The increased traffice Gp results in more interference

new(

int (5.65)

. new
and a new estimate Gp has to be made.

Slow convergence Iindicates that the retransmissions result in a
significant increase in interference, again causing a substantial
Increase in additional retransmissions. The channel is thus
approaching saturation. The iterative computer programme appears to
simulate the modelled dynamic behavior of the channel, as a
sequence of steps modelled by quasi-static offered traffic
estimates Gp. It should be noted that this interpretation is at
odds with the assumption of stationary distributions made in

section 1.4.2.



5.11 Uniform throughput

The program described in the previous section is contained in
appendix B. The offered traffic distributions are depicted in
figures 5.10a, 5.1l1la and 5.12a. Results by the incoherent model are
indicated with solid lines, while the results by the critical
circle model are marked.

The first figure (5.10) applies for receiver threshold Zy =1
(perfect capture). The traffic G(p) to be offered according to the
incoherent model is given for various throughput intensities §=0.1,
0.2, up to 0.8. The number of retransmissions, and thus G(p),
increases rapidly for terminals near the boundary of the cell (p+1)
as soon as the total traffic 5 exceeds some 0.6 packets per slot
(pps). The program then has to execute nine or more iterations
before reaching the ER~criterion in (5.62). A total traffic as high
as (.8 pps can be received, but distant terminals must offer a
traffic more than four times higher (more than one pps per
normalised unit of area, ppspa) than is successfully received
(0.8/m ~ 0.25 ppspa).

Calculations for 5=0.9 (and higher) no longer converge and seem
near or beyond the channel capacity. The total offered traffic G is

given as a function of S in figure 5.10b.

The results are compared with

® the standard slotted ALOHA curve S$=G exp{—G}
_Z UG
® S= G exp{ EE:T } of section 5.1

) S=1—exp{—G} for a receiver that can be captured on average by
one packet per occupied slot,

® the bound 8 < G for any receiver.

Calculations using the critical circle model confirm the analytic
results derived by Abramson for Zg=l. Furthermore, in this event
the total offered traffic G closely follows the relation

S =1 - exp{-G},

which was predicted in (5.14).
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Information on the convergence rate can be found in appendix B by

means of computer tables of the variables ER and the total traffic
G.

The traffic to be offered if the receiver has a threshold of Zg=4
and Zy=10 is given in figures 5.11 and 5.12. Near the cell boundary
(p*1) the number of retransmissions increases rapidly with the
traffic load if S is larger than $=0.4 pps resp. $=0.3 pps. The

channel appears to reach its capacity limit for
0.5 <8 < 0.6 pps resp. 0.4 < S < 0.5 pps.

As confirmed by the curves for higher receiver thresholds (Zg > 4),
the offered traffic can be constant with distance when p + 1. The
effect has been explained by (5.18), predicting the existence of a
constant G(p) = Sy exp{G} for p > [8/20)—1 = }v/2.

Comparing the plots using the critical circle model with the plots

using the incoherent model, we note the following:

For low receiver thresholds (ZO=1), the c¢ritical eircle model is

more optimistic, while for median to large thresholds {Zy=t and 10)

the incoherent model is more optimistic.

For intermediate values of p (p=0.5), high thresholds and large
traffic loads, the effect of interference generated outside a
circle of radius ap is apparent: the incoherent model requires more
traffic per area to be offered than according to the critical
circle model. On the other hand for the much larger area of

relatively large p {p>0.5) the effect of fading is very

favourable.



- 68 -

Incoherent addition

Trafflie Glp) io be offered Lo give o homogeneous

spatlal distribution of Lhe iraoffic Lroughput S50(p1 ~eceiver threshold: 1.0 + 0.0dB}
Q 0 2 .4 .6 -8 1
L L ¥ ;"
c o e — F d1.8
@ [ i |83
o b <A
o e ot “A41.6
E - s . A
s by i.4 /ré .4 1.4
C C ‘ -
t YA e
~1
a o 1 u/_;l
o L K/Céi e
o et .Bg;;/ 48
“ .
Lo e / -~
5 N e 1.5
L C /(//
- L~
RV s 4.4
o -
w - T
5 N 1-2
w - "
[N o] .
S — o T IR S S N S N 0
(=] 0 .2 4 .6 8 1
Normalised distonce of terminaol p Throughput &
Figure 5.10b(t) and 5.11b(+):
Figure 5'103("“) and 5'113(+)= Total required offered craffic G
Spatial distritution of reguired foxr a recelwer threshold of Zgp=t and
offered traffic G(p) for uniform Zg=h, respectively, as finction of
throughput S5{p)=8/m wich S=0.1, 0.2, the throughput 5, compared sHth
ete, for a recefver threshold of Zy=i #l standard slotted ALDHA: SG e
ard Zy=4, respectively. #2 ring model (section 5.3)

#3 capture of one packet every
occupled slot: S=1-Rg
o4 capture of all packets: $=G

Incoherent addition
Troffic Gleo) Lo be offered to give o homogeneous

spotial disiributlon of Lhe troffic troughput $00) receiver threshold: 4.0 1 6.0d8}
a 0 i z .3 4« .5 6 7 8 8 1 .6 8
a 1 T T T T T T L] T T 1 T T7JT ) 2
8 9l 4.9 1 ‘:;IJ
- o3 ]
o 8+ ] .8 o “ A
A
S
7+ 4.7 1. AR
-~
- 4.6 l- A /, 1.2
~ -
s} 4.5 1 <4

Taotal traffic offered
. \\\ 2\
° - ‘\

Offered Lrofflec per norm.

Normaiised distance of terainal p Throughput 8



i Incaoherent addition
Troffic GIp) Lo be offerec Lo give a homogeneous

spotial disiribution of Lhe iraffilc troughput 5(p1 ~ecelver Lhreshold:10.0 « 10.0 g8}
2. 0 1 2 3 4 .5 6 7 B .9 ! -6 .8 i
- i T + T T T T . T | 2 T 2
© y
0 g | 1.9 1.8 318
“ ﬁj
o ar 4.8 © 1.6 o3 A1.6
- -~
: N £
L 4 ©
c 7 7 o - s R
0 C b -
c 5+ 1.6 w12-// N -
C t T ~ -
© / C
4 s | *s o i B
o o ;;::/I ../,’.‘
o 4 | {4 B R
he t: o4
[ [« LI S 4.6
|
-3 J: A . .
-4 . .o 4.4
ks ~ R
L O 2 - 4.2
t = _ . .
[ G
G — I W R SN SR N T
0 a
O 0 2 4 6 8 1
Normalised distonce of terminal p Throughput §
Figure 5.12a: Figure 5.12b:
Spatial distributfon of required Total required offered traffic G
offered traffic G{p) for uniform as function of throughput S, compared
throughput $(p)=S/n with $=0.1, 0.2, ... with
_G

®l standard slotved ALOHA: S=C e

®2 ring model (secticn 5.3)

®3 capture of one packet every
occupied slot: S=1-R;

&4 capture of all packets: S=G



- 70 -

6 COHERENT ADDITION

6.1 Spatial distribution of the traffic throughput

Coherent signal addition has been described in section 2.2.2. These
results are now used to study the channel throughput behaviour.
Arnbak and Van Blitterswi jk [1] concluded that, compared with
incoherent addition, the coherent addition of interfering signals
promises a higher channel capacity. The model of propagation
(section 2.1) and addition of interference signals will be referred
to as the "coherent model”. In analogy with the incoherent case we
also assume a universal threshold Z, independent of n (5.3). The

validity of this assumption requires further study.

In this section the spatial distribution is found by inserting
the image of the joint mean power pdf (4.35) in the conditional
capture probability (4.63)

« .

B

Algh(ZoA)dA, - -+ " (6.1)

where we have replaced the integration variable A by Zji. With
(4.68) and (6.1) the channel throughput per normalised unit area,

S(p), can be written as
. @ ® o B [ . -8 |
()= 6(p) [1- LR+ {Rp Ofexp{-Ap Jg"(zgr)dr}],  (6.2)

or, after interchanging integration and summation and using the

series expansion of the exponential function

S5(p) G(p) e_G [1+ p_B DI exp{—lp-B} (exp{G g(ZOA)}-l] dX ]

o

G(pye Cp7B Of exp{-2o" 40g(zon) Jar. (6.3)
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Three methods to analyse the spatial distribution of traffic in a
mobile ALOHA network with this equation will be proposed. First,
S(p) can be found using the Gauss—-Laguerre numerical integration
method; a second method 1is provided by a formal series expansion,
and the third possibility is given by Laplace transformation of the
throughput density. For large traffic loads G, an asymptotic

expansion of the Laplace integrals may be useful.

6.2 The Gauss—Laguerre numerical integration method

A substitution of Ap_B é X in (6.3) yields

S(e) = 6(e) [ e exp(-G +6g(2goPx)} ax. (6.4)

Integrals of this form can be calculated numerically from the

Gauss-Laguerre integration method [7,(25.4.45) and table (25.9)]

o« m
DI e * f(x) dx = jgl v, f(xj) + R (6.5)

for an m-point integration, where wj are welght factors in the
sampling in the points x . and Rm is the residual error.
An example of the set (wj,xj) for a 6-point integration is given in

figure 6.1 [7].
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Applied to (6.3) one finds

m . o B e e s N
S(e) = G(p) ] w, exp {-0+0g(Zoo® x,)} (6-6)
j=1 | -

6.3 Series expansion

A formal series expansion of S(p) can be found from
< B
S(p)= -G(p) e f exp{Gg(ZOA)} d exp{-p A}. (6.7)
A=0
After integrating by parts we can write
L]

f Gg'(2g)) exp{Gg(ZOA)} a4 exp{-p_sk}].
A=0

S(p)= G(p)[1-Zge © pb

Partial integration can be repeated with integrals of the form

S(pY= 6(pI[ 1+ «vven + [ wee. d exp{-o"Fa}].
A=0

This results in the expansion

 S(p)= G(p)[1+‘zapﬂégf(03+‘zgpzs{cg"(0)+(cg'(0)]2}+....], (6.8)

(k)

provided the expansion converges and g (0) exists for all k.

Writing the expansion (6.8) in terms of the moments B we find

5(p) =G(°).[1‘ZQPBGQiLf'?ﬁﬂg?(GU2+G2u%) + - T

3
239_8(093‘3G2u1u2-G3u?) +.oeen ], (6.9)

1f all moments By exist. From the normalisation (1.8) of ﬁs’ it
will be clear that the moments My increase with k, so the expansion
must be restricted to sufficiently small values of p. Bounds on the

moments are described by (4.28) and (hQﬂO).
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Recommendations 4.1 and 4.2

The form of the throughput per unit area S(p) written in terms of
the statistical properties (i.e., the moments uk) of the
unconditional packet power pdf, suggests that Mellin transformation
of the mean power pdf might be useful. The Mellin transformtion is
described in Appendix C.

Writing the expansion (6.9) in terws of central moments o (about
the mean u;) is also recommended for further study. The central
moments are defined as

n & E(E- ") (6-10)

and for instance my=i;u¢. The second central moment m, is better
known as the variance g2.

6.4 The image of the spatial throughput distribution

Analogous to g(v), a Laplace-transformed image function s{v) of the

spatial distribution of the traffic throughput can be defined as

- o B
s(vy & L%{Sg (p )} = Of 210 S(p) e ' dp (6.11)
s

This function is the Laplace image of the traffic throughput per

unit of mean packet power given by

S5 (ES=D_B] 2 2mp s(p) |22 g%pe+2 S(p).  (6.12)
s dps

As distinct from g(v) and f- , the functions s(v) and Sﬁ are not
s s

normalised to unity, but to S. S0, using integration (1.10),
L]

s(0)=S and of S5 (x) dx = s. (6.13)
5
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Inserting (6.3) in definition (6.11) of the image s(v), we find

s{v)= OI 2mp G(p) e_G p—B OI exp{-(l+v)p_8 +Gg(ZOA)} dx dp.

By substitution of p_6=x, using (1.14) and interchanging the order

of integration

s(v)= Ge™° ofof f5 (x) x e IRy (FB(ZoM) gy
g .

The inner integral equals the derivative of the translated Laplace

image -g'(At+v), so
s(v)= ~Ge © OJ’ g8 '(Mv) exp{Gg(Zyr)} da, (6.14)

which gives the image function of the spatial distribution of the
traffic throughput. We shall call equation (6.14) the coherent
analysis equation as it provides an expression for the traffic

throughput, given the traffic offered.

Recommendation 4.3
" We have not found a ggpp;glﬂsplg;icnmforutheAintegral”eqﬁéfiﬁﬁmﬂ'
-—-+(6:14). A sibstitation of Gg(v) £ In{h(v)} may be useful. We then

__ TRk hZ)
s(v Oj Hrhe) 0D dx. (6.15)

Boundary conditions are h(O)??‘@,h(?)él_(see-(A.l.) and (4.6) ).
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6.4.1 Special cases of the coherent analysis equation

Although general solutions are difficult to derive, some special
cases of the coherent analysis equation are interesting (and easy)

to derive.
In case of a light (offered) traffic load (G+Q), we find
s(v) + G g(v), (6.16)

confirming that the effect of collisions can be neglected in this
case. A similar case can be derived from Zg*0. In this event all

packets can capture the receiver, irrespective of any overlap.

With high receiver thresholds (Zyp*>), we find from the analysis
equation (6.14)

o
s(v)= - f Ge_Gg'(A+v) el ax
0

= ~Ge [ g'(x) dx = G g(v) exp{-G} (6-17)

v

With the high-threshold receiver, an overlap will destroy all
involved n+l packets. Only packets transmitted in slots with no
interfering packets (n=0) capture the receiver. The probability Ry
of no interference is equal for all transmitters (i.e., indepen-
dant of distance p). So for Zy+» the spatial distribution of S(p)
has the same shape as G(p), but is reduced by the loss factor

exp{~G} for slotted ALOHA.

Recommendation 4.4

This effect has already been noticed in the incoherent case, where
it is of particular influence for traffic from the boundaries of
the cell, as packets generated in this region often satisfy the
loss criterion (1.4) even with moderate Zge Derivation of a similar
obsetvation in the coherent case is recommended. The approximation
(4.32) may be useful.
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6.5 Asymptotic integral expansion for high traffic loads

An asymptotic expansion for high traffic loads (G+») of (6.14) can
be obtalned by integration by parts of the Laplace integrals
[38,p258]. The analysis equation is rewritten as

-G [
-Ge g'(Atv) d
s{v) 7.6 oj I d exp{Gg(Zgr)} da, (6.18)
with which the partial integration is carried out: (6.19)

—G [--]
~e ' (Atv) -G d E'Sl"‘va

This 1s permissible if the image function g(v) 1is at least twice
differentiable, i.e., according to (4.5) and {(4.9), if at least the
first and second moments u; and p, exist. (As can be seen from
{4.28), this will be the case for realistic distributions, but for
instance not for the (quasi-) constant distribution of example 2 in
section 4.1.3.) From (4.5) and (4.9) it then follows that the
conditions (3) in [38,p259] are satisfied:

g(Zgh) <1 (for 0<A<=), Z,%0, ;30 and g'(v)#0. (6.20)
These conditions are insufficient to ensure that the integral on

the right hand of side (6.19) exists, but they can be shown [38]

strong enough to ensure that

o By gt (v) .
s(v) 708" (0) Zon1 for G . {6.21)

Reverse transformation of both sides and applying (A.l1.5) yields

the distribution of the mean power of the received packets

P
- s -
Sgs(ps) " Ton fﬁs(ps) for G + =, (6.22)
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The spatial distribution of throughput traffic can now be obtained
from (1.14) and (6.12)

-8
s(e) = &= el for G + = (6.23)
oMl

Integration by parts may be continued to obtain higher-order terms.

Each step introduces a new factor of 1/G. After some algebra, which

is contained in appendix E, we find

- _ﬂu_lag_{ L(V_
s(v) Zoupy G u?
(6.24)
1 —Hy u%

e [(Gy ) B - Safn _Loainy

After reverse transformation to the p domain, the spatial

distribution of throughput traffic can be found on the form

Sp(p) = G(p)[ alp—ﬁ + azpﬂzs + a3p_3B + e ], (6-25)

with a1 an expansion in terms of G_J:

A 1
al = [

ZOCul

=3

az=§'5éza%[-l - é%% + ...]

A 1 .
3 = 5363;? [ 1 + L. ].
Recommendation 4.5

The above asymptotic expansion was only derived a few weeks before
finishing this thesis. A more detailed study is recommended.
Derivation of a general form of the Factors a in (6.25) is
recoumended. Expansion (6.24) appears to incotporate a factor My in
its i-th term. As Wy can increase exponentially with i,
convergence of (6. 24) remalns to be shawn.
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6.6 Total traffic throughput S

We now study the special case v=0 in the analysis equation (6.14)
-]
~G 1 =
s(0)= —Ge Uj g'(2) exp{Gg(Zgr)} da =5, (6.26)

where the last equality follows from (6.13). We have thus found an
expression for the total traffie throughput S. In appendix C this
equation will be derived in a different way by transformation of
formulas in [1].

Comparing (6.26) with the standard ALOHA throughput relation, the

improvement factor of the channel throughput can be defined as

ag

n(G,z4) = of—g'(l)exp{cg(zol)} v > 1 (6.27)

The improvement factor n increases with G and decreases if the

receiver threshold Z; increases.

Three special values of the receiver threshold have been found for
which the 5-G relation is independant of the spatial distribution
of the traffic. Moreover, for large traffic loads (G+») all

realistic distributions will be shown to result in the limit

0 P ._..-_._.‘u—.‘—a — ————

Spatial distributions with unbounded moments may giQé.other limits
[1]. It will be shown that with most thresholds Z;, the total
throughput S depends not only on Zy and the total offered traffic
G, but also on the shape of the spatial distribution of traffic.
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Spatial cases of the total traffic throughput equation

® High recelver thresholds: Zj+=

® The

In this case formula (6.26) correctly returns to the pure

ALOHA case as

§=G e © J mE0dA = 6 exp(=6) (6.28)

All packets experiencing overlap are lost.

perfect-capture receiver: Z;=1

We find
s= ~exp{-G} exp{Gg(})] :=0 = 1- exp(-G) (6.29)

The Poisson character of the offered traffic gives an inter-
pretation of this result, as precisely the part l-e_G of all
time slots is occupied by one or more packets. Thus all
occupied slots contribute, on average, one successful packet.
This is an interesting result as it means that, given perfect
capture in the coherent case, increasing traffic G never
leads to a decrease in channel throughput. Remarkably, the
throughput § also equals the throughput (5.14) for the
critical circle model. However in (6.29) we may not assume
that every occupied slot contributes exactly one received
packet. Some occupied slots will contribute none, while other

slots may contribute, in principle, more than one packet!

® special case Z,=0

These

5= -Ge™C NERES fadr = ¢ (6.30)

All packets capture the receiver.

three cases apply for any spatial distribution of the offered

traffic.



6.6.2 Series expansion for heavy traffic loads

For other receiver thresholds, results will now be obtained by

inserting v=0 in the formal asymptotic expansion (6.24)

1 p M2 Zg71 L waZfl wg(3zg+l)

S = Z, + T I - 52[;T—ZE_+31_Z_3_]'" . {6.31)

Apparently, any spatial distribution with bounded moments has, in

the coherent case, the non~zero throughput limit

[¥5]
It
N~

for G + =, (6.32)

This has been found in a special case in [1].
Writing (6.31) in terms of central moments (6.10) yields

Zo—l ma

-1 1 -
S=7,% % [_z?_ (1+ uf)] R (6.33)

The first-order term clearly confirms an increase in traffic
throughput if the differences in received packet power are
increased [2] [24].

For non—perfect capture [Zo>1] saturation effects occur, since 3

decreases with G for large G. Thus, the 5-G throughput curve has an

extremum S with
max

T O (6.34)

Recommendation 4.6

Derivation of the general fom of the i-th term of the expansion is
recomended. ' e e
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We now continue with some specific examples of spatial

digtributions of the offered traffic.

6.7. Ring model

In the ring model the spatial distribution of the traffic is a 6-

distribution [1]. All packets are received with the same mean

power.

6(p) =3, 8(p-1)  and 5 (5= 8(5-1). (6.35)
]

The Laplace transform of the latter is g{v)= exp{-v}.

6.7.1 Capture probabilitz

Although the intermediate results of the probabilities F n and
¥

Iz , are no longer necessary to obtain the desired throughput § and

its spatial distribution S(p), these probabilities are given as an
illustration. We apply the formulas (4.57) and (4.63) to find

o nZ,
F_ = 14 of exp{-(nZo+l)r} dA

{6.36)

Z,n nZ g+l

Iz,n(p) = Fz a for p=1

»

[I (p) for p#l is of no interest].
zZ,n

These results agree with [1]-

6.7.2 Traffic_Ebroughput

The traffic throughput image can be derived by applying the

coherent analysis equation (6.14)

s(v)= ~ce™® OI exp{-A—v+Ce‘z°A} di. (6.37)
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The integral is given in [8,(3.331.1) on p308]

-G -1
s(v)= e " g%- (<)% y(z3l,-c (6.38)

X
using the incomplete y-function y(a,x) & OI e t ta_1 dt.

As might be expected we find a spatial ring distribution of the
traffic throughput '

s(v)=S e ' and thus S(p)= gnﬁ(p—l).

(6.39)
The total throughput of the channel now becomes
A . =G ce® 23} -1
§5Ce” nG,z0)= S (-67°®  ¥( zp ,-¢) (6.40)
Another standard-form solution is found by substituting
g(d) 4 t in the expression (6.26) for the total throughput:
1
s = 6 | t exp{6(t?9-1)} 4 1nt, (6.41)
=0

which can be written as the Integral representation [7,(13.2.1)] of
Kummer's function [7,(13.1.2)], after substituting tzo-lg—x

1 1 -1
_ -Gx dt _ -Gx d _ 20 g -
S= G of e T oidx= G df e 3l (1 f}m_ﬂlmﬁfi- (6.42)
One.finds
-1
S = G M(l,Z2g +41,-G),

(6.43)

where Kummer's function can be represented by [3j(i5.1.2)]

1

1 S o
M(1,25041,-6) & [ e CF x0 (1-x)%0 71 4y,
0
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A serlies expansion for the total traffic can be found from the

Z
glightly different substitution G(t 0-1) 4 =x in (6.41). Partial
integration then yields

G ~1 G -1
-X R\2 - -G Zn -1
5206 Jem (-G)0 ax = o [T alzEy (1- )"0 7]

Repeating the integration by parts leads to the series expansion

G2 G3
S= G - _1 + —l _1 = see @ (6-44)
Zg +1 (Zg +1)(Zg +2)

which is the same as [7,(13.1.2)]. The limit Sw= 1/20 1s confirmed
by [7,(13.1.15)]

1 -1
§ = z; (1 +0¢c ). (6.45)

The expansion has the correct limits S=1-e_G for Zg=1 and S=Ge-G
for Zg+w. As can be seen from figures 6.2 and 6.3, the first terms
of the series expansion give a good approximation for G not too

large. Other properties of the total throughput traffic S(G) curve,

e.g. the extremum, may be found by applying the theory of confluent
hypergeometric functions [7,(13)].

© M ":", 1 -
- - b, tarm
%02 Figure 6.2: Expansion for
H 2. tocn the total traffic throughput
? e S as a function of the
g N 20 1 offered traffic G for a
% ° \\\ perfect—capture receiver.

0 2 Y .6 B0t o2 e 16 18 20
total offered traffic @
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/ p
- 1 teew ,-/ Figure 6.3: Expansion
- /' }}.ru 3 teras’
1 . e P for the total traffic
a0 4 . T
i )z il throughput S as a
] /o bx - function of the offered
H P/ ‘\:\\ \ traffic G for a receiver
Ty
3 1 4 . \ with threshold Z;=.
- \‘
o 0.5 1.0 ’ 1.3 —\a

tatal effersd traffic G

For large G the expansion by partial integration (6.24) is valid

Zo~1 (Zg+1)(2Z-1)
s _ §(p-1) (1 1 %0 1 (&g 0
8(p)= 3 6(p-1)= > [fo+ g _zg— - &2 73 +.oo ]+ (6.46)

The limit Sm is in accordance with results in [1].

6.8 Quasi-constant traffic density

The quasi-constant traffic density G(p)= % exp{—gp”}, described in

[1] and example 1 in section 4.1.3, for f=4 has the area mean power
pdf

S s

_—'i' R | S ’ S R

£5 (Eﬂsﬂ)_‘i ; SS " exp{=} e e T T (24,13

s
and its Laplace imagé has the form [7,(29.3.82)]

g(v)= exp{-J;;}. (=4.14)
Although the behaviour 6fv;adistribution with unbounded expected

received power (u1+m) has-to be regarded with caution, this example

does yield instructive results [1]-
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6.8.1 Capture probability [1]

Using the formula of the capture probability (4.57) we find

e}

- Of/n exp{~vr (n/Z+1) /A} da

ngO
n;20+1 ’t=0 = 1l Zo+l * (6.47)

Fz n here has the same form as in the ring-model, if Z; in the
3

latter is replaced by /ZQ- This confirms the observatiom that only

in the events Zg = 0, 1 or =, the throughput relation (S-G) becomes

independant of the spatial distribution involved.

6.8.2 Total traffic throughput

The correspondance Zg»Zy can also be established for the total

throughput S. Applying formula (6.24), we find (6.48)
-G G -3
5= G f exp{G[t/zo-l]} dt = -3 fe—x(G--x)zO —ldx
0 cZo zi o

3
where we have substituted exp|{-/ms} & t and G[l-tzo] LI

Erdélyi gives the sclution for the integral [9,(6) pll7 vol-I], s0

-G

-3 -7 -1
5= 2p° Ge " (-6)720 y(z3%,-c), (6.49)

confirming the correspondence with the ring distribution. The above

equation, using Kummer's function, thus equals

S = ¢ M(1,25*+1,-GJ. (6.50)
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e T T

[ -

mrms e

The expansion suggested in.(6-9)—can'nﬁt’ylglawfggalts due to the
unbounded moments B In this case, however, application of the
expansion method in the previous example yields a valid result,

corresponding to (6.44) with Z; replaced by VZ.

G2 63 .
- n-o]-

§ = (¢ - + I - (6.51)
(zo™+1}(zo%+2)

3
Zp ™+l

Consequently figures 6.2 and 6.3 correspond to the cases Zg=l and
Zp=16, respectively, when the offered traffic has the quasi-

constant density of example 1.
The expansion for large traffic loads (6.24) is not valid as uy is
unbounded. But according to the Z; + V/Z; correspondance, this

distribution has the throughput limit [1]

S, = 1/ ¥z, (6.52)

6.8.3 Conditional capture probability

s s . e s . e . i s et i e B e

Spatial properties of the throughput can be derived from (4.63)

= - - — 2
RO 0jexp{ A-n/7Z, p2/A]dA. (6.53)

We now substitute Yng %nf?zopz and q 4 A+ Y

-]

= - 2 - 2 - . e - - -
Iz,n(p) 1 OI exp{yn a2} 2{q Yn} dq. (6.54)

By separating this into two integrals the first cancels with unity,

and only the second integral remains: {6.55)
= 2 — = w2
Iz,n(p) ZYn exp{Yn} Yf exp{-q2} dq %! Y, exp{Yn} erfc{Yn},

n
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where erfc(x) - 73 [ exp{-t2}at [7,¢73].

m
X

These results are similar to those in [1], which were obtained in

another way.,

6.8.4 Spatial distribution of throughput traffic

Although the image functions have proved convenient to derive Iz 0’
]

a closed-form solution for the spatlial distribution of traffic has
not been found, because

w

-4 2 e"ﬂ'—z_ot }

S(p)= G(p) e“G 0-4 OI 2t exp{-p t“+ ¢ dt (6.56)

has not been solved. Analytic calculations are difficult, as_the

image function g(v) has unbounded derivatives for v=0.

6.9 Coherent synthesis

6.9.1 Synthesis using the -Gauss-Laguerre method

In the event of coherent addition, a synthesis method using
iterative numerical computing with the Gauss-Laguerre analysis
method will now be proposed. Results will be presented and
discussed for perfect capture (Zg=1) and for a receiver with
threshold Zg=4. The iteration scheme is obtained from the Gauss~
Laguerre integration method described by (6.6). Analogous to the
synthesis scheme for incoherent signals, the loss factor is
obtained from the i-th estimate. Together with the required

throughput, this gives the new estimate

1
G.,(pP) =8(p) m , (6.57)
i+l _ B
j£1 wj exp{ G1+Gigi(zop xj)}
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where, using (4.11) and (1.9), the image function expression can be

written as

AU R -8

“6H 0y By (M) = [ 21 6y (h) (e 1) an - (6.58)

The starting function is chosen as
Gglp) = S(p)-

The spatial distributions are sampled in N points, and from an N-

point integration, the argument
-G, +
Gi Gig(Zop xj)

of the exponent in (6.57) is obtained for each specific diStance P
and summation index j. An m~term summation gives the loss factor in
(6.57). As the loss factor depends on distance p, this has to be
(p).

executed for all N samples to yield a new estimate Gi+l

Sufficiently accurate results have been obtained with an 8—-term
summation, 25 samples of the spatial distributions and up to 30
iteration steps. Synthesising light traffic loads required far less
iterations. As in the incoherent synthesis, the iteration is
terminated when the required accuracy is reached [see (5.62)); if
the sequence of estimates diverges; 1f the total traffic to be
offered Gi becomes too large (Gi>30 pps); or if the maximum number
of M (M=30) iterations 1s exceeded. Processing time for coherent

synthesis is approximately twenty times larger than for incoherent

synthesis, partly ‘due to the extra summation. e o e T

6.9.2 Uniform throughput

The programme used to synthesise uniform throughput is contained in
appendix B. In figure 6.4a,.the_offereﬂ_traffic distribution in the

event of perfect capture is depicted for various throughputs
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S/m for 0 < p <1
S(p) = ,
0 elsewhere

with 8= 0.1, 0.2, .... 0.9 packets per slot.

Comparing this figure with figure 5.10, one can -not surprisingly-
conclude that coherent addition requires less traffic to be offered
to yleld a certain throughput than is required with incoherent
addition. In figure 6.6 the required offered traffic distributions
for the three models are compared in the event of perfect capture

and a uniform throughput S = 0.6 packets per slot.

As can be seen in figure 6.4b, the numerically obtained total

traffic relation closely follows
5=1- exp{—G},

which was predicted by (6.29). As far as total traffic is
concerned, the results of coherent modelling are the same as
results from the critical circle model.

However, as can be seen in figure 6.6, the spatial distributions
differ for the two models. With coherent addition, for intermediate
distances (0.3 < p < 0.7), more traffic per unit area has to be
offered. This 1s due to signal addition Iin the event of more than
one interferer cutside the critical eirele of the test packet. On
the other hand, for larger distances (p + 1), the offered traffic
required by the coherent model is less: in this area the effect of
Rayleigh fading appears to have a favourable influence on the
capture probability.

Information on the rate of convergence can be found in appendix B.

Results for a receilver threshold of Zp=4 are depicted in figure
6.5. As can be seen in figure 6.5a, near the cell boundary (p-+1),
the required offered traffic G(p) becomes rather constant with
disctance. Comparing this distribution with G(p) in the evenr of
incoherent uniform throughput in section 5.11, coherent addition

yields slightly more optimistic results.
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7 CONCLUSIONS AND RECOMMENDATIONS

The image-function approach has been shown very fertile in
analysing the spatial distribution of packet traffic in a mobile
cellular network. Analytic methods for analysis have been found.
Extension to the synthesis problem 1s possible by iterative

numerical computing.

In the incoherent case, general analytic results and many exanples
have been presented and explained. For coherently interfering
signals, the analysis method obtained has been applied to a few
examples. In this case, closed-form solutions are difficult to
find, as integrals of exponents with complicated arguments are
often involved. However, coherent transmission of the packets
should be explored as the throughput will be larger than when
incoherent interference 1s experienced. Even for heavy coherent
traffic loads the theoretical limit of the throughput is non-zero.

Stability of the channel is thus guaranteed.

Recommendations for further study have been glven througheout this
thesis, they are printed with dense characters. A summary of these

recommendations is given below:

1) The introduction of a receiver threshold dependent on the rumber
of interfering signals.

Z) Derivation of coherent and incoherent analysis equations for
more sophisticated propagation models, in particular with shadowing
included.

3) Application of the expansion for Laplace integrals, for the
Incoherent analysis equation, to yield more insight in the
behaviour under high traffic loads.

“) A more detailed study of the coherent addition channel. In
particular:
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3) Evaluation of the described coherent analysis methods using a
typlcal offered traffic distribution. As an example, the lmage of
the truly-constant distribution has been described in section
4.1.3. The Gauss-Laguerre method yields the throughput distribution
in the p~domain. For various offered traffic loads G, this can be
compared with the Taylor series (6.6) and Laurent series (6.25).
Study of the convergence area of both expansions in the p and G
domain 1s recommended.

6) Implementation of the results in a chamel control System.
Packet retransmission protocols may be optimised using the
developed knowledge of the behaviour of the ALOHA chamel. The
charmel control system can measure the pdf of the received packets.
This uniquely specifies the spatial distribution and the image
functions. A synthesis technique is useful to gather informtion on
the saturation of the channel and to predict congestion.
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APPENDIX A PROPERTIES OF THE LAPLACE TRANSFORM

A.1 TABLE
operation image original
1 x
integration 3 h{v) f £(x) dX (A.1.1)
0
A d
differentiation v h(v) f'(v) = av £f(v) (A.1.2)
X
convolution hy (v} hy(v) 0[ £ (x-)E,(A)dA (A.1.3)
P 1
int of image [ n(x) 4 S £00) (A.1.4)
v
d A,
diff of image v h(v)= h'(v) -xf(x) (A.1.5)
translation e ¥V h{wv) f(x=a)U(x~a) a>0 (A.1.6)
transl. of image h( v-a) e™* f(x) (A.1.7)
1 b
scaling h(av) > £(=) (A.1.8)

[0 1
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A.2 LEMMA

Assume two functions fl(x) and fz(w), with Laplace images, resp.,
gl(q) and gz(p), and given fl(x), fz(w) can be found from

1
£,(w)= Oj % exp{~ =} £,(x) dx. (A.2.1)

The Laplace image of fz(w) now becomes

g,(p) = o exel- 3 1@ dq (A.2.2)

P
A typical example of f1 and f2 is found in formulas concerning

Rayleigh fading, e.g. (2.2). Note the different role of independent
and dummy variables in (A.2.1) and (A.2.2).

Proof:
@ -} 1
W
BZ(P)- Of OI x exp{ i wp} fl(x) dx dw.
Integration over w gives
o £.(x)
- S S
8y(p) = OI x p+1i/x 9%
A 1
A temporary substitution of y = x + = gives
71 1
g0 = [ oo f,070) dy .

1/P ¥p

This can be written as a integral over q:

=N L

[ fl(y-i) e’ dy dg,

g, (p)
2 0 1/p

I

or  g,(p) OIOI £,(x) exp{‘Q(x+%)} dx dq (A.2.3)

o

The integration over q equals a Laplace transformation from x to P
domain, so

of expi- g} 8,(q) dq. Q.E.D.

o b

g,(p) =
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APPENDIX B: COMPUTER PROGRAMS FOR SYNTHESIS

100 FILE 2(TITLE="RESULTS",KIND=DISK, PROTECTION=SAVE,NEWFILE=TRUE)
200 FILE 6(KIND=REMOTE,MYUSE=OUT)

300 FILE 5(KIND=REMOTE,MYUSE=IN)

400 FILE 90(KIND=PREVIEWER)

500 BLOCK GLOBALS

600 $ INCLUDE “PLOTTER/FORTRAN/DECLARATION ON ApPL"

700 END

800 $ INCLUDE "PLOTTER/FORTRAN/ALLSUBS ON APPL"

900

1000 Chdededddekdodokdhddddddedhdhkk &k dddodkdkhd ki kdknddkdkhkdkikihin
1100 c C
1200 c This program calculates the TRAFFIC OFFERED C
1300 C to an ALOHA wmobile radio network C
1400 c which gives a homogeneous throughput S0 C
1500 c c
1600 Chhhkkhhkhhhrhhkihhkhhhkhhkhkkhkrhhkhkhhkhkkkkhrhkhkhkkkkhxkrxk(
1700 c C
1800 c C
1900 C author: Jean—-Paul Linnartz, may 1986 C.
2000 c Eindhoven University of Techmnology C
2100 c Department of Electrical Engineering : c
2200 c Telecommunications division T e G
2300 C C
2400 ChrhhhhhkkhhkhhAhhAhkrRhkrrxRRRRAIITIRXARIEI I Ak khkhhhhhhhkhdd(
2500 C C
2600 C In the incoherent case, the iteration equation for c
2700 C synthesis of traffic to be offered is C
2800 c 2 pl Z p¥*4 C
2900 CG (r)=50 * exp(tint(-——m——wommm—— 1 G(1)dl)) . ¢C
3000 C I+l Z pkky + 1hk4 I L. c
3100 c c
3200 C where the integral is taken from zero to one. C
3300 c c
3400 Codededede e o sk e s ek ek ko ok e e e e o o et e e e ke ok ok e ek e ek e ek ek e ok O
3500 REAL IREAL,NREAL ,WEIGHT,BOUND
3600 REAL GT,ER,EROLD
3700 REAL Z,S,PI,POINT,INT,L,A

3800 REAL G,GNW,R,GABR
3900 REAL GTOT,STOT, PURE,GAR,RING, PERF
4000 REAL ABX,ABY
4100 DIMENSION GTOT(11),STOT(11),GABR(1000)

4200 DIMENSION ABX(3),ABY(3)

4300 DIMENSION PURE(50),GAR(50),RING(50),PERF(50)

4400 DIMENSION G(100),GNW(100),R(100)

4500 INTEGER M,N,T,EI,III
4600 INTEGER K,KK,PR
4700 INTEGER 0BJ1,0BJ2,0BJ3
4800 PI=3.141592
4900 c

5000 WRITE (6,100)
5100 WRITE (6,101)

5200 READ (5,200) 2

5300 WRITE (6,104)

5400 READ (5,210) M

5500 WRITE (6,106) -
5600 READ (5,210} N

5700 IF (N.GT.50) THEN N=50

5800 K=10



5900
6000
6100
6200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
1700
7800
7500
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
9000
8100
9200
9300
9400
9500
9600
9700
9800
9900
10000
10100
10200
10300
10400
10500
10600
10700
10800
10900
11000
11100
11200
11300
11400
11500
11600
11700
11800
11900
12000

C

100
101
102
103
104
106
111
110
113
112
150
151
200
210
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IF (M.GT.30) THEN M=30
WRITE (2,111) 2,K,M,N
WRITE (6,150)

READ (5,151)

NREAL=N#*],
FORMAT(" calculation of traffic offered to the channel,/)
FORMAT(" receiver/modulation threshold Z0 = ", /)
FORMAT(" total traffic throughput S= ", /)
FORMAT (" max number of curves in plot",/)
FORMAT(" M, max number of iteratioms = " /)
FORMAT(" N, number of samples in spatial distrib.= " /)

FORMAT(" Z0= ",F10.5," K= " I3," M,N= ".,213,/)

FORH.AT(" II)

FORMAT("Fading and power add model")

FORMAT("Critical surface model™)

FORMAT(" Do you want convergence info on terminal? Y=1",/)
FORMAT(I1)

FORMAT(F10.5)

FORMAT(I3)

Chidhdddhkihddhdddidkskhkidkkihdkihidikdhkhihhdikkkkhkkkk

C

c

3000

400

1000

KK=0
STOT(1)=0.
GTOT(1)=0.
KK=KK+1
EROLD=1000000
new parametexr S; new curve
$=0.10 * KK/PI
STOT(KK+1 )=0. 1 *KK
WRITE (2,113)
WRITE (2,2010) KK,STOT(KK+l1),S

DO 400 III=1,N
IREAL=FTI*1.
R(IEI)=IREAL/N
G(III)=S

I=0

I=1+1
ER=0.
GT=0.

Chxkxxkkk calculation of a new distibution of G(r) *RAkkkAkkkkAk

c

c

800

DO 900 II=],N

per sample point we calculate the integral
INT=0.

As Z * (R(II)**4)

DO 800 IIi=]1,N-1

N samples of integrand
IREAL=III * |,

L=IREAL/N

POINT= A*2 . *PI*L*G(1III)
INT=INT+POINT/{A+L**4)
CONTINUE

INT = INTH+A*PI*G(N)/(A+1)

INT= INT / N



12100
12200
12300
12400
12500
12600
12700
12800
12900
13000
13100
13200
13300
13400
13500
13600
13760
13800
13900
14GG0
14100
14200
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
15900
16000
16100
16200
16300
16400
16500
16600
16700
16800
16900
17000
17100
17200
17300
17400
17500
17600
17700
17800
17900
18000
18100
18200
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IF (INT.GT.30) GOTCO 3100
GNW(II) = S * EXP(INT)

900 CONTINUE
g**********************************************************
C
Chxx%* total traffic and convergence control ***xkkikkikdik

DO 950 II=1,N-1

IREAL=IX * ],

GT=GT+ (IREAL * G(II) / N)

ER=ER+ ABS( (GNW(II)-G(II))/G(II) )}

950 G(1II) = GNW(II)

G(N) = GNW(N)

GT=2,*%PI*GT/N

GT=GT+ PI*G(N)/N

GTOT(KK+1)=GT

ER=ER*100. /N

IF(PR.EQ.1) WRITE(6,2005) I,ER,GT
WRITE(2,2005) I,ER,GT

C test on divergence:
IF(ER.GT.EROLD) GOTO 3100
EROLD=ER

c

C

IF (I.LT.M .AND. ER.GT.0.001) GOTO 1000
C make another iteration

IF (I.EQ.M) WRITE (2,2006)

IF(PR.EQ.1) WRITE(6,2001)

WRITE(2,2001)
c
c kkkkkkkkkikkkhkkk*x QUTPUT OF RESULTS *&*kkkkkhkkk
c

2000 FORMAT(2X,I5,1X,F10.5,1X,4F10.5)
2001 FORMAT(" ')

2005 FORMAT(" iteration ",12," dev",F9.3," Z Gtot= ",F10.6)

2006 FORMAT(" MAX NUMBER OF ITERATIONS !" )
2010 FORMAT("*** plot ",I3," with total traffic S=",
$ F6.3,", distributed ", F6.4," per area ***'")
2020 FORMAT(" ! Exponent overflow ! end of calculation")

c
CALL CURVDZ(90,0,0,15,15,1,N,R,G,
$ 10,0,1,10,0,1,.FALSE.,.FALSE.)
c
IF (GT.LT.4 .AND. KK.LT.K) GOTO 3000
C make another plot with higher traffic load
C

Chk%kxkkx%* rhe total traffic S—G curve H**kkkkkkkikkkhkkkkkk
c
3100 IF (INT.GT.30) WRITE (2,2020)
C
CALL CURVDZ(90,15,0,25,15,1,KK,STOT,GTOT,
$ 10,0.,1.,10,0.,2., .FALSE.,.FALSE.)

C***********************************************************C

C C
C If fading and power addition are neglected, the C

C traffic to be offered can be calculated from the c
c critical surface model presented by Abramson. c
c c
Chkkkkdd ki dkhdkhdhhkkrhihkhhhhhkhhktikhhrhkhkhkkrrhirhkikC
C C



18300
18400
18500
18600
18700
18800
18900
19000
19100
19200
19300
19400
19500
19600
19700
19800
19900
20000
20100
20200
20300
20400
20500
20600
20700
20800
20900
21000
21100
21200
21300
21400
21500
21600
21700
21800
21900
22000
22100
22200
22300
22400
22500
22600
22700
22800
22900
23000
23100
23200
23300
23400
23500
23600
23700
23800
23900
24000
24100
24200
24300
24400
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)

(r)= 80 * exp{+int( 2 pi L G (1) 41))
I+1 i

C
C
Cc
c
where the integral is taken from zero to a. c
C
C

#xkdkk#kkk CRITICAL SURFACE MODEL BY ABRAMSON *hakihkkikikk

sEeEsEsETETE2EL)

WRITE (6,114)
WRITE (2,114)
114 FORMAT ("kkkhhkhkkhhkhhhhhhkhkihkkkhhhhkkhrkrhhkhkhxkrthk')

REAL GTOTA
DIMENSION GTOTA(11)
KK=0
A=SQRT(SQRT(Z))
GTOTA(1)=0.
6000 KK=KK+1
EROLD=1000000
C new parameter S; new curve
$=0.10 * KK/PI
WRITE (2,112)
WRITE (2,2010) KK,STOT(KK+1),S

C
C
DO 3400 III=1,N
IREAL=XIT*].
R(IIE)=IREAL/NREAL
3400 G(ILII)=S
C
I=0
4000 I=T+1
ER=0.
GT=0.
C

Cxixkikk® calculation of a new distibution of G(r) **kkkkdkkkikk
C
DO 3900 I1I=1,N
C per sample point we calculate the integral
BOUND= A*1X
IF(BOUND.GT.NREAL) BOUND=NREAL
C No traffic offered outside cell
INT=0.
ITI=1
IREAL= I11 *l.
3800 CONTINUE
c samples of integrand
WEIGHT= BOUND -~ IREAL + 0.5
IF(WEIGHT.GE.1.) WEIGHT = 1.
IF(WEIGHT.LE.(O.) GOTO 3850
INT=INT+2.*PIXIREALXG(IXI)*WEIGHT
IFT=I1I+]
IREAL=IITI *],
GOTO 3800
3850 CONTTNUE

s EeNoNe]

INT= INT /(NREAL**2)
IF (INT.GT.30) GOTO 6100
GNW(II) = S * EXP(INT)



24500
24600
24700
24800
24900
25000
25100
25200
25300
25400
25500
25600
25700
25800
25900
26000
26100
26200
26300
26400
26500
26600
26700
26800
26900
27000
27100
27200
27300
27400
27500
27600
27700
27800
27900
28000
28100
28200
28300
28400
28500
28600
28700
28800
28900
29000
29100
29200
29300
29400
29500
29600
29700
29800
29900
30000
30100
30200
30300
30400
30500
30600
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3900 CONTINUE
c
C

C**********************************************************

c

Ch*k%* total traffic and convergence control **&kkikiikdik

DO 3950 II=1,N-1
IREAL=1I * 1.
GT=GT+ (IREAL * G(II) /NREAL)
ER=ER+ ABS( (GNW(II)-G(ILI))/G(IL1) )
3950 G(II) = GNW(II)
G(N) = GNW(N)

GT=2.*PI*GT/NREAL

GT=GT+ PI*G(N)/NREAL
GTOTA(KK+1)=GT

ER=ER*100. /NREAL
IF(PR.EQ.1)WRITE(6,2005) I,ER,GT
WRITE(2,2005) I,ER,GT

IF(ER.GT.EROLD) GOTO 6100
EROLD=ER

IF (I.LT.M .AND. ER.GT.0.001) GOTC 4000
C make another iteration

IF (i1.EQ.M) WRITE (2,2006)

IF(PR.EQ.1) WRITE(6,2001)

WRITE(Z,2001)

c kkkhkkkkkhkkkhkkkx QUTPUT OF RESULTS #hhkkikkikhdsk

DO 3960 III = 1,N
3960  GABR((KK-1)*N+III)=G(IIL)

c
c
IF (GT.LT.4. .AND, KK.LT.K) GOTO 6000
C make another plot with higher traffic load
6100 IF (INT.GT.30) WRITE (2,2020)
c
CALL MPNTDZ(90,0,0,15,15,1,N,1,KK*N,R,GABR,
$ 10,0.,1.,10,0,,1.,.FALSE., .FALSE,)
C
Chhkixktk*x rthe total traffic S—C curve *kkkkkkxkkkhhhkiikk
C
CALL NEWOBJ(OBJ3)
CALL PNTSDZ(90,15,0,25,15,1,KK,STOT,GTOTA,
$ 10,0.,1,,10,0.,2., .FALSE.,.FALSE.)
c
DO 8888 Ii=1,21
GT=(II-1.}/10.
GAR(II)=2.5+5* GT
GAR(21+IE)=12.5-5.*%GT
PURE(II)=17.5+5.% GT*EXP(-1.*GT)
PURE{21+II)=17.5
PERF(I1)=22.5 - 5.*EXP(-1.*GT)
PERF(21+11)=22.5
A=—1 . *Z%GT/ (Z+1.)
RING(II)=17.5+5.*GT*EXP(A)
RING(43-I1)=PURE(IL)
8888 CONTINUE
C

ABX(1)=17.5
ABY(1)= 2.5
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30700 ABX(2)=22.5

30800 ABY(2)= 7.5

30900 ABX(3)=22.5

31000 ABY(3)= 2.5

31100 C

31200 A=10.*ALOG10(Z)

31300 CALL FILPOL{OBJ3,1,42, PURE,GAR,"A",30,0.25)
31400 CALL FILPOL(OBJ3,1,42,RING,GAR,"A",0.,0.35)
31500 CALL FILPOL(OBJ3,1,32,PERF,GAR,"D",30,0.25)
31600 CALL FILPOL(OBJ3,1,3,ABX,ABY,"B",30,0.25)
31700 CALL POLYGN(OBJI3,1,42 PURE,GAR,1)

31800 CALL POLYGN{(OBJ3,1,2l,PERF,GAR,1}

31900 CALL POLYGN(OBJ3,1,2,ABX,ABY,1)

32000 CALL POLYGN(OBJ3,1,42,RING,GAR,1)

32100 CALL COTEXT(OBJ3,16.3,2.5,90,.35,5,

32200 $ "Total traffic offered G")

32300 CALL COTEXT(0BJ3,2.2,1. ,0.,.32,5,

32400 5 "Normalised distance of terminal)

32500 CALL COTEXT(OBJ3,1, %.2 ,90,.32,5,

32600 $ "Offered traffic per norm. area S( )")
32700 CALL COTEXT(0BJ3,17.9,1.,0,.35,5,

32800 $  "Throughput 8")

32900 CALL COTEXT(0BJ3,.5,15 ,0,0.8,0,

33000 $ "SYNTHESIS")

33100 CALL COTEXT(OBJ3,.52 ,15 ,0,0.8,0,

33200 5 "SYNTHESIS")

33300 CALL COTEXT(OBJ3,.5,14.4 ,0,.25,0,

33400 $ "Traffic G( ) to be offered to give a homogeneous")
33500 CALL COTEXT(0BJ3,.5,14.0 ,0,.25,0,

33600 $ "spatial distribution of the traffic troughput S( )")
33700 CALL COTEXT(O0BJ3,14.5,14.7 ,0,.40,5,

33800 $ "Incoherent addition")

33900 CALL COTEXT(OBJ3,14.5,14.0 ,0,.27,5,

34000 $ "receiver threshold: ( dB)")

34100 CALL CONNUM(OBJ3,19.6,14,0,0.27,5,"F4.1",DBLE(Z))
34200 CALL CONNUM{(0BJ3,21.4,14,0,0.27,5,"F4,1",DBLE(A))
34300 CALL DRAWOB(90,0BJ3,0,0,25,20)

34400 CALL DISPOB(OBJ3)

34500 C

34600 CLOSE(2,DISP=CRUNCH)

34700 STOP

34800 END

34900 ChEhkkAhxhkhkhhhhkkhhhhhhhhhhhhrkhhhhhdhhhkihhhhkikikiihkhk
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DATE & TIME PRINTED: TUESDAY, OCTOBER 21, 1986 @ 15:20:57.

100

200

300

400

500

600

700

800

900
1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200
4300
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5500
5600
5700
5800

FILE 2(TITLE="RESULTS",KIND=DISK,PROTECTION=SAVE,NEWFILE=TRUE)
FILE 6(KIND=REMOTE,MYUSE=OUT)
FILE 5(KIND=REMOTE ,MYUSE=IN)
FILE 90(KIND=PREVIEWER)

BLOCK GLOBALS
$ INCLUDE "PLOTTER/FORTRAN/DECLARATION ON APPL"

END

$ INCLUDE "PLOTTER/FORTRAN/ALLSUBS ON APPL"

Chukkkhkhhhrhhhhkhhhkhhhkhkhkkhhhhhhkrhkk khkkkkhkhhrRhhhhkhthkihk

C c
C This program calculates the TRAFFIC OFFERED C
C to an ALOHA mobile radio network C
C which gives a homogenoous throughput S0 c
C C
ChrkkkkhRhhrkRARAARARRARRARAARRARIRAIRA I AR Rh R AR R kT IR XA A A XXC
C C
c c
C author: Jean-Paul Linnartz, OCTOBER 1986 C
C Eindhoven University of Technology C
C Department of Electrical Engineering C
C Telecommunications division C
c C
Chhkhhkdkdkhdihhhkhiikhhkhhihikhhihhhhhhhkihhihkkhhhhkhikhkk(
C c
C In the COHERENT case, the iteration equation for C

C synthesis of traffic to be offered is obtained
C from the Gauss-Laguerre numerical integration
C method

C
C
C
C
C**************** e g Fe e A e Je e e o o ok v e e e e ok e e e ok vk ke ok ke ke o ok e ok e ok ek e ke ke

REAL IREAL,IIIRL,IMAGE

REAL CT,ER,EROLD,NREAL

REAL Z,S,PI,POINT,INT,A, SAREA

REAL G,GNW,R,GABR,TERM, SUM

REAL GTOT,STOT,PURE,GAR,RING,PERF

REAL ABX,ABY,X,W,ARG,GTNEW

DIMENSION GTOT(1l),STOT(1l),GABR(1000)

DIMENSION ABX(3),ABY(3)

DIMENSION PURE(50),GAR(50),RING(50),PERF(50)

DIMENSION G(100),GNW(100),R(100),X(20),W(20)

INTEGER M,N,¥,ET,EII,L,LL

INTEGER K,KK,PR,NN

INTEGER OBJ1,0BJ2,0BJ3

PI=3.141592

WRITE (6,100)

WRITE (6,101)

READ (5,200) 2

WRITE (6,104)

READ (5,210) M

WRITE (6,106)

READ (5,210) N
IF (N.GT.50) THEN N=50
K=10



5900
6000
6100
6200
6300
6400
6500
6600
6700
6800
6900
7000
7100
7200
7300
7400
7500
7600
7700
7800
7900
8000
8100
8200
8300
8400
8500
8600
8700
8800
8900
9000
9100
9200
9300
9400
9500
9600
9700
3800
9900
10000
10100
10200
10300
10400
10500
10600
10700
10800
10900
11000
11100
11200
11300
11400
11500
11600
11700
11800
11900
12000

100
101
102
103
104
106
111
110
113
Cl12
114
150
151
200
210
220
C
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IF (M.GT.30) THEN M=30
WRITE (2,111) Z,K.M,N
WRITE (6,150)

READ (5,151) PR

IF(S.GT.1) S=1.

NREAL=N*]1.
NN=0

FORMAT("™ calculation of traffic offered to the channel"”,/)
FORMAT(" recelver/modulation threshold 20 = ",/)
FORMAT(" total traffic throughput S= ",/)

FORMAT(" max number of curves In plot",/)
FORMAT(" M, max number of iterations = ",/)

FORMAT(" N, number of samples in spatial distrib.= ",/)
FORMAT(" Z0= ", F10.5," k= ",I3," M,N= ",213,/)

FORMAT(™ ")

FORMAT("COHERENT ADDITION model™)
FORMAT(IIII)

FORMAT(" S, TOTAL TRAFFIC THROUGHPUT = wh

FORMAT(" Do you want convergence info on terminal? Y=1",/)
FORMAT(I1)}

FORMAT(F10.5)

FORMAT(I3)

FORMAT(F10.5)

ChhhkhhhkhdkhkhkhhkhhhhhkhhhkkhhkhhhhkhhhrhhkhkhhkkAhhkhhhkdhhkk

C
c

Ck%kxk*%k%k calculation of a new distibution of G(r) **kkkkkkkkikk

3000

400

X(1)=0.1702796323
X(2)=0.9037017767
X(3)=2.2510866298
X(4)=4.2667001702
X(5)=7.0459054023
X(6)=10.7585160101
X(7)=15.7406786412
X(8)=22.8631317368
W(1)=3.69188589342%, 1%*]
W(2)=4.18786780814%.1%%]
W(3)=1.75794986637%, ]1**]
W(4)=3.33434922612%,]1%*2
W(5)=2.79453623523*1%%3
W(6)=9.07650877336%,1*%*5
W(7)=B.4B574671627%, 1%*7
W(8)=1.04800117487*,1%%9
NN=NN+1

STOT(1)=0.

GTOT(1)=0.
S=NN*0.1

EROLD=1000000
new parameter $; new curve
SAREA=S/PI
WRITE (2,113)
WRITE (2,2010) NN,S,SAREA
GTNEW=S

STOT(NN+1) = §

DO 400 III=I,N
TREAL=ITI*].
R(III)=IREAL/NREAL
G(III)=SAREA



12100
12200
12300
12400
12500
12600
12700
12800
12900
13000
13100
13200
13300
13400
13500
13600
13700
13800
13900
14000
14100
14200
14300
14400
14500
14600
14700
14800
14900
15000
15100
15200
15300
15400
15500
15600
15700
15800
15900
16000
16100
16200
16300
16400
16500
16600
16700
16800
16900
17000
17100
17200
17300
17400
17500
17600
17700
17800
17900
18000
18100
18200
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KK=0
1000  KK=KK+1
ER=0.
c NEW ITERATION
GT=GTNEW
DG 600 I=1,N
C For every sample point
IREAL=T*].
SUM=0.
Do 700 II=1,8
C summing Gauss-Laguerre
IMAGE=0.
DO 800 IIE=1,N-1
C Calculate image function point
ITIRL=TIIEI*1.
ARG=-1.%Z * ((IREAL/IIIRL)**4) * X(II)
IMAGE=IMAGE+2.*PI*IIIRL*G(TIII)*(EXP(ARG)-1.)
800 CONTINUE
ARG=-1.*Z%( (IREAL/NREAL)**4)*X(11)
IMAGE=TMAGE+PI*G(N)*(EXP(ARG)-1.)
IMAGE=IMAGE/ (NREAL**2)
TERM= W(II) * EXP(IMAGE)
SUM= SUM + TERM
700 CONTINUE
GNW(I)= SAREA / SUM
600 CONTINUE
C
C
L e e A E Lt it
c
Ch**** total traffic and convergence control **kkkkdkkikkiikk
C
GTNEW=0.
DO 950 II=1,N-1
IREAL=IT * 1.
GTNEW=GTNEW+ (IREAL * GNW(II) / NREAL)
ER=ER+ ABS( (GNW(II}-G(II))/G(II) )
950 G(II) = GNW(II)
G{N)=GNW(N)
GTNEW=2,*PI*GTNEW /NREAL
GTNEW=GTNEW+PI*GNW(N)/(NREAL)
GTOT(NN+1)=GTNEW
ER=ER*100./NREAL
IF(PR.EQ.1) WRITE(6,2005) KK,ER,GTNEW
WRITE(2,2005) XK,ER,GTNEW

C test on divergence:
IF(ER.GT.EROLD) GOTO 3100
EROLD=ER

Cc

C

IF(KK,LT.M.AND.ER.GT.0.001.AND.GTNEW.LT,.30)GOTO 1000
C make another iteration
IF (KK.EQ.M) WRITE (2,2006)
IF(PR.EQ.1) WRITE(6,2001)
WRITE(2,2001)

C kkkkkKkkkhkkkkkxkx QUTPUT OF RESULTS #%kkddkikkhk

2000 FORMAT(2X,15,1%X,F10.5,1X,4F10.5)
2001 FORMAT(™ ")
2005 FORMAT(" iteration ",I2," dev",F9.3," T Gtot= ",F10.6)



18300
18400
18500
18600
18700
18800
18900
19000
19100
19200
19300
19400
19500
19600
19700
19800
19900
20000
20100
20200
20300
20400
20500
20600
20700
20800
20900
21000
21100
21200
21300
21400
21500
21600
21700
21800
21900
22000
22100
22200
22300
22400
22500
22600
22700
22800
22900
23000
23100
23200
23300
23400
23500
23600
23700
23800
23900
24000
24100
24200
24300
24400
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2006 FORMAT("™ MAX NUMBER OF ITERATIONS !'" )
2010  FORMAT("*** plot ",I3," with total traffic §= ",
$ F6.3,", distributed ", F6.4," per area ***")

2020  FORMAT(" ! Exponent overflow ! end of calculation™)

C
C

CALL CURVDZ(90,0,0,15,15,1,N,R,G,

$ 10,0,1,10,0,1,.FALSE., .FALSE,)

Cc

IF(NN.LT.10.AND.GTNEW.LT.30.) GOTO 3000
C make another plot with higher traffic load
Cc

Chrkkkikkkk the total traffic S—-G curve Hhkkkkkrkkhhkhkikkhk

c
3100 IF (INT.GT.30) WRITE (2,2020)

c
CALL PNTSDz(90,15,0,25,15,1,NN, STOT,GTOT,
$ 10,0.,1.,10,0.,2., FALSE.,.FALSE.)
C
c

Chkkxrkikk the total traffic S-G curve *rkkkkkkkkhkkkhkkhik
C
CALL NEWOBJ(OBJ3)
c
c
c
DO 8888 II=1,21
GT=(XI-1.)/10.
GAR(II)=2,5+5% GT
GAR(21+1I)=12.5-5.*GT
PURE(II)=17.5+5.*% GT*EXP(~-1.*GT)
PURE(21+IL)=17.5
PERF(II)=22.5 ~ 5.*EXP(-1.*GT)
PERF(21+11)=22.5
8888 CONTINUE

ABX(1)=17.5
ABY(1)= 2.5
ABX(2)=22.5
ABY(2)= 7.5
ABX(3)=22.5
ABY(3)= 2.5

A=10.*%AL0OG10(Z)
CALL FILPOL(OBJ3,1,42,PURE,GAR,"A",30,0.25)
CALL FILPOL(OBJ3,1,42,RING,GAR,"A",O.,0.35)
CALL FILPOL(OBJ3,l,32,PERF,GAR,"D",30,0.25)
CALL FILPOL(OBJ3,1.3,ABX.ABY,"B",30,0.25)
CALL POLYGN(OBJ3,1,42,PURE,GAR,1)
CALL POLYGN(OBJ3,1,21,PERF,GAR,1)
CALL POLYGN(OBJ3,l,Z,ABX,ABY,l)
CALL COTEXT(OBJ3,16.3,2.5,90,.35,5,

] "Total traffic offered G")
CALL COTEXT(O0BJ3,2.5,1. ,0.,.34,5,

$ "Normalised distance of terminal™)
CALL COTEXT(OBJ3,1, 2.4 ,90,.34,5,
$ "Offered traffic per norm. area")

CALL COTEXT(0BJ3,17.9,1.,0,.35,5,
$ "Throughput §")

CALL COTEXT(OBJ3,.5,15 ,0,1.1,0,
$ "SYNTHESIS")

CALL COTEXT(OBJ3,.525,15 ,0,1.1,0,
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24500 $ "SYNTHESIS")

24600 CALL COTEXT(OBJ3,.5,14.4 ,0,.25,0,

24700 $ "Traffic G(r) to be offered to give a homogeneous")
24800 CALL COTEXT(OBJ3,.5,14.0 ,0,.25,0,

24900 $ ‘"spatial distribution of the traffic troughput S(r)")
25000 CALL COTEXT(ORJ3,14.5,14.7 ,0,.40,5,

25100 5 "coherent addition')

25200 CALL COTEXT(OBJ3,14.5,14.0 ,0,.27,5,

25300 $ '"receiver threshold: ( dB)")

25400 CALL CONNUM(0BJ3,19.6,14,0,0.27,5,"F4.1",DBLE(Z))
25500 CALL CONNUM(OBJ3,21.4,14,0,0.27,5,"F4.1",DBLE(A))
25600 CALL DRAWOB(90,0BJ3,0,0,25,20)

25700 CALL DiSPOB(0OBJ3)

25800 C

25900 CLOSE{2,DISP=CRUNCH)

26000 STOP

26100 END

26200 C****************************************************
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RESULTS

DATE & TIME PRINTED: TUESDAY, NOVEMBER 18, 1986 @ 11:04:48.

160 Z0= 1.00000 K= 10 M,N= 36 30

200

360 Fading and power add model

400 *%% plot 1 with traffic S= Q.190, {.e. 9.031i8 per area
500 iteration 1 dev 3.464 % Gtot= 0.100272

608 iteration 2 dev 0.130 2 Gtot= 0.105167

709 iteration 3 dev 0.005 7 Gtot= 0.105373

860 iteration & dev 0.600 2 Gtot= @.105381

900

19060 Fading and power add model

1100 *%*% plot 2 with traffic S= 0,200, i.e. 0.9637 per area
1200 iteration 1 dev 7.120 ¥ Gtot=s 0.281133

1390 iteration 2 dev 9.535 2 Gtot= 9.221372

1400 iteration 3 dev 9.844 % Gtot= 0,223196

1500 iteration 4 dev 9.004 T Gtot= 0.223344

1600 iteration 5 dev 0.680 I CGtot=  @.223357

1700

1800 Fading and power add model

196 *%% plot 3 with traffic S= 0.300, i.e. 8.0955 per area
2000 iteration 1 dev 10.988¢ ¥ Gtot=  §.392656

2190 iteration 2 dev 1.245 T Gtot= 0.349776

2200 iteration 3 dev 9.164 Z Gtot= 9.35656Q

2390 iteration 4 dev 0.022 ¥ Gtot= 9.357489

2400 iteration 5 dev 0.003 % Gtot= 09.357614

2508 iteration 6 dev #.000 T Gtot= 9.357631

2600

2709 Fading and power add model

2860 *%x%* plot 4 with traffic S= 0.400, 1.e. 9.1273 per area
29G0 iteration 1 dev 15,056 ¥ Gtot=  @.404919

3600 iteration 2 dev 2.297 2 Gtot= 8.491695

31090 iteration 3 dev 0.427 % Gtot=  0.509563

3200 iteration 4 dev ©.083 % Gtot= 9.513103

3300 iteration 5 dev 0.016 Z Gtot=  @.513797

3460 iteration 6 dev 0.003 I Gtot= 9.513932

3500 iteration 7 dev 0.001 2 Gtot= 0.513959

3600

37496 Fading and power add model

3800 **% plot 5 with traffic S= 0.580, i.e. 0.1592 per area
3960 iteration 1 devy 19.362 2 Gtot= 9.508Q13

4900 iteration 2 dev 3.738 ¥ Gtot=  09.648636

4100 iteration 3 dev 0.925 2 Gtot= 9.687639

4200 iteration 4 dev 0.244 X Gtot= 0.698231

4300 iteration 5 dev 0.065 I Gtot= 0.701992

4400 iteration 6 dev 9.018 2 Gtot= ©.7G1863

4500 iteration 7 dev 0.005 Z Gtot= @,7082072

4600 iteration 8 dev 0.801 T Gtot= @.7@2128

4700 iteration 9 dev 0.600 T Gtot= §.702143

4800

4900 Fading and power add model

50680 *%% plot 6 with traffic 5= 0.600, i.e. 0.1910 per area
5190 iteration 1 dev 23.913 7 Gtot= 9.612034

5200 iteration 2 dev 5.629 X Gtot=  0.822356

5300 iteration 3 dev 1,786 X Gtot= 0.898176

5400 iteration 4 dev 0.623 Z Gtot= 0.925624

5500 iteration 5 dev 0.224 Z Gtot= 9.935621

5600 iteration 6 dev 0.082 I Gtot= 9.939274

5760 iteration 7 dev 0.0380 7 Gtot= 0.940612

5800 iteration 8 dev 0.911 % Gtot= 0.941102



5900
6900
6100
6200
6360
6400
6580
6600
6760
6800
6900
7€00
7160
7200
7300
7460
7590
7600
7700
7800
7900
8900
8100
8200
8300
8400
8500
8600
8700
8800
8906
9900
9100
9200
9300
9400
9500
9600
9700
9800
3900
10900
10169
19200
19300
10400
10560
18600
10700
10860
18900
11069
11109
11200
11300
11400
11509
11600
11769
118909
11960
12600

iteration

9

dev

iteration 10 dev

iteration

*kk plot

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

*k% plot

iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iceration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration
iteration

11

Y - R e N R O

D QD O N BN

30

dev

dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev

dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
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@.004 2 Gtot=
0.601 % Gtot=
0.001 Z Gtot=

Fading and power add model
7 with traffic S=

28.724
8.849
3.283
1.455
0.701
0.347
0.174
0.088
0.844
0.022
0.611
9.006
0.903
0.001
6.981

Fading and power add model
8 with traffic S=

33.812
11.100
5.471
3.249
2.122
1.479
1.075
0. 805
0.616
0.479
9.378
0.301
0.241
0.195
0.158
06.129
9.105
0.086
0.071
6.658
0.048
0.040
6.033
0.0827
0.023
0.019
0.015
0.013
¢.011
0.009

MAX NUMBER OF ITERATIONS !

*%* plot

iteration
iteration
iteration
iteration

£l N e

dev
dev
dev
dev

Fading and power add model
9 with traffic 5=

TR e PO SR P PR e e

2

4
4
4
4
4
%
4
4
z
%
%
p4
b4
4
Z
4
4
4
A
4
z
4
4
z
Z
z
4
z
Z

9.708,
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=

9.8689,
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=

9.500,

39,195 7 Gtot=
14,917 %2 Gtot=
9.076 ¥ Gtot=
7.119 % Gtot=

0.941281
0.941347
@.941371

i.e. 0.2228 per area
9.717992
1.014928
1.151445
1.216557
1.248495
1.264422
1.272434
1.276483
1.278535
1.279575
1.280103
1.280371
1.280567
1.280576
1.289611

i.e. 8.2546 per area
9.823308
1.228858
1.462178
1.688971
1.797961
1.778146
1.829732
1.868661
1.898626
1.922042
1.940557
1.955334
1.967214
1.976822
1.984629
1.999998
1.996210
2.000486
2.084002
2.006898
2.009286
2.9011258
2.012888
2.014237
2.915353
2.016277
2.017843
2.017678
2.0182@5
2.018642

i.e. 8.2865 per area
9.930813
1.467247
1.852439
2.177232



12100
12200
12300
12400
125909
12660
12700
12800
12909
13000
13160
13209
13300
13409
13509
13600
13760
13800
13999
14060
14100
14209
14300
14400
14509
14600
14790
14860
14900
15000
15100
15200
15300
15409
15500
15600
15700
15800
15900
16000
16109
16200
16300
16400
16500
16600
16700
16860
16900
17000
17100
17260
17300
17400
175600
17608
17700
17800
17900
18@Q0
18100
18200
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S dev
6 dev

6.689 X Gtot=
7.366 X Gtot=

iteration
iteration

2.495494
2.856995

e e e vk ok e sk ok e v oo o v e e e e e o e o o e o o o ok e e A e o e o ke de ok ok e e de ok

Critical surface model
*** plot 1 with traffic S=

iteration 1 dev 3.263 ¥ Gtot=
iteration 2 dev 0.094 ¥ Gtot=
iteration 3 dev 0.002 % Gtot=
iteration 4 dev 0.000 2 Gtot=

Critical surface model

*%k% plot 2 with traffic S= @.200,
iteration 1 dev 6.722 ¥ Gtot=
iteration 2 dev 0.388 T Gtot=
iteration 3 dev 0.02¢ 2 Gtot=
iteration 4 dev 2.081 Z Gtot=

Critical surface model

*%% plot 3 with traffic S= 0.300,
iteration 1 dev 10.393 T Gtot=
iteration 2 dev 9.900 2 Gtot=
iteration 3 dev 0.973 T Gtot=
iteration 4 dev 0.085 X Grot=
iteration 5 dev 0.800 2 Gtot=

Critical surface model

*** plot 4 with traffic 5= 0,400,
iteration 1 dev 14.290 Z Gtot=
iteration 2 dev 1.658 ¥ Gtots=
iteration 3 dev 0.189 I Gtot=
iteration 4 dev 9.018 ¥ Gtot=
iteration 5 dev 0.002 2 Gtote
iteration 6 dev 0.000 ¥ Gtot=

Critical surface model

*k* plot 5 with traffic S= 0.500,
iteration 1 dev 18.430 T Gtot=
iteration 2 dev 2.694 % Gtot=
iteration 3 dev 9.406 % Gtot=
iteration 4 dev 8.053 T Gtot=
iteration 5 dev 0.806 ¥ Gtot=
iteration 6 dev 0.401 % Gtot=

Critical surface model

**% plot 6 with traffic S= 0,608,
iteration 1 dev 22.831 2 Gtot=
iteration 2 dev 4.054 T Gtot=
iteration 3 dev 0.778 ¥ Gtot=
iteration 4 dev 0.134 X Gtot=
iteration 5 dev 0.920 ¥ Gtot=
iteration 6 dev 0.003 X Gtot=
iteration 7 dev 0.800 % Gtot=

Critical surface model

*%% plot 7 with traffic S= 0,700,
iteration 1 dev 27.512 X Gtot=
iteration 2 dev 5.797 T Gtot=
iteration 3 dev 1.382 T Gtot=
iteration 4 dev 9.306 ¥ Gtot=
iteratfon 5 dev 0.960 % Gtot=
iteration 6 dev %.01¢ Z Gtot=
iteration 7 dev 9.002 T Grot=

0.100, i.e. 9.0318 per

9.169351
9.105196
0.105363
@.105367

i.e. 8.0637 per

9.201476
0.221685
0.223094
0.223176

i.e. 0.0955 per

§.303499
0.350614
9.356241
0.356745
0.356781

i.e. 9.1273 per

0.406558
0.493865
0.508914
0.510872
8.5110673
0.511991

i.e. $.1592 per

0.510812
©.653347
0.686791
0.692798
9.693650
0.69375Q

f.e. 0-1910 per

9.616442
@.831532
0.897994
8.914074
0.917151
0.917634
9.917699

area

area

area

area

area

area

i.e. 0.2228 per area

0.723654
1.0631599
1.154696
1.194556
1.204865
1.207048
1.207440
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18300 iteration 8 dev 0.000 % Gtot= 1.207581

18400

18560 Critical surface model

18600 *k* plot 8 with traffic S= 0.800, 1.e. 0.2546 per area

18700 iteration 1} dev 32,494 % Gtot=  8.832681
18800 iteration 2 dev 8.003 ¥ Gtot= 1,257793
18900 iteration 3 dey 2.339 7 Gtot= 1.476384
19060 iteration 4 dev 9.663 2 Gtot= 1.572337
19160 iteration 5 dev 0.170 % Gtot= 1.606849
192080 iteration 6 dev 0.039 Z Gtot= 1.617673
19300 iteration 7 dev 9.008 ¥ Gtot= 1.619635
19460 iteration 8 dev 0.80! T Gtots 1.620195
19590 iteration 9 dev 8.000 % Gtot= 1.620305
19690

19760 Critical surface model
19800 *%% plot 9 with traffic S= 0.900, i.e. 0.2865 per area

19900 iteration 1 dev 37.799 X Gtot~ .943788
20006 iteration 2 dev 10.778 X Gtot= 1.516950
20100 iteration 3 dev 3.847 Z Gtot= 1.897526
20200 iteration 4 dev 1.406 ¥ Gtot= 2.134865
20300 iteration 5 dev 0.4986 T Gtot= 2.264832
20400 iteration 6 dev 0.158 % Gtot= 2.326285
26500 iteration 7 dev 0.846 2 Gtot= 2.351645
20600 iteration 8 dev 9.012 Z Gtot= 2,361034
29760 iteration 9 dev 0.803 7 Gtot= 2.364253
208490 iteration 10 dev 8.801 % Gtot= 2.365305
20990

21000 Critical surface model
21109 %% plot 10 with traffic S= 0.900, i.e. 0.3183 per area

21209 iteration 1 dev 43,452 % Gtot= 1.057276
21360 iteration 2 dev 14.278 2 Gtot= 1.815875
21460 iteration 3 dev 6.255 ¥ Gtot= 2.488961
21580 iteration 4 dev 3.040 % Gtot= 3.164621
21660 iteration 5 dev 1.546 ¥ Gtot= 3.967882
21700 iteration & dev ©.808 2 Gtot= 5.354789
21860 iteration 7 dev 8.433 ¥ Gtot= 11.621261
21990 iteration 8 dev 0.239 T Gtot= *¥kkkkkikk

22000 ! Exponent overflow ! end of calculation
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DATE & TIME PRINTED: TUESDAY, NOVEMBER 18, 1986 @ 11:17:27.

100 ZD= 1.00000 K= 10 M,N= 38 30

200

300 COHERENT ADDITION model

400 *%* plot 1 with traffic S= 0.100, i.e. 0.0318 per area
508 iteration 1 dev 3.439 7 Gtot= ©.105108

680 iteration 2 dev 0.125 % Gtot= 0.105319

700 iteration 3 dev 0.005 % Grot= 0.105327

800 iteration 4 dev 9.000 Z Gtot= 0.105327

990

1000 COHERENT ADDITION model

1100 *%% plot 2 with traffic S= 0.200, i.e. 0.0637 per area
1260 iteration 1 dev 7.046 2 Gtot=  0.220999

13060 iteration 2 dev 0.509 Z Gtot= 0.222827

1400 iteration 3 dev 0.040 Z Gtot= 9,222974

1500 iteration 4 devw 0.003 Z Gtot= 9.222986

1600 iteration 5 dev 0.000 ¥ Gtot=  0.222987

1700

180G COHERENT ADDITION model

1900 **% plot 3 with traffic S= 0.300, i.e. 0.08955 per area
2000 iteration 1 dev 10.828 ¥ Gtot= $.348569

2100 iteration 2 dev 1.169 Z Gtot= 9.355279
2200 iteration 3 dev 0.144 % Gtot= ' 0.356130
2300 iteration 4 dev 0.018 % Gtot= 0.356238

2490 iteration 5 dev 0.002 T Gtot= @.356252
2500 iteration 6 dev #.000 ¥ Gtot= @.356254

2600

2760 COHERENT ADDITION model

2800 *%% plot 4 with traffic S= 0.400, 1.e. 0.1273 per area
2900 iteration 1 dev 14.795 Z Gtot= €.488777

3060 iteration 2 dev 2,123 T Gtot= 0.596078

3100 iteration 3 dev 9.363 X Gtot= 9.509229

3280 iteration & dev 8.064 X Gtot= 8.509791

3308 iteration 5 dev 0.011 ¥ Gtot=  @.50989]

3400 iteration 6 dev 0.082 %2 Gtot=  0.509909

3500 iteration 7 dev 0.006 2 Gtot= ¢.5099]2

3600

3790 COHERENT ADDITION model

3800 *** plot 5 with traffic S= 0.500, i.e. 9.1592 per area
3900 iteration 1 dev 18.956 2 Gtot=  9.642658

4800 iteration 2 dev 3.396 % Gtot= 9.679548

4160 iteration 3 dev 0.757 X Grot= @.688541

4200 iteration 4 dev 0.177 X Gtot= 9.690693

4300 iteration 5 dev 0.042 % Gtot=  0.691205

4400 iteration 6 dev 0.010 ¥ Gtot= 9.691327

4500 iteration 7 dev 0.002 7 Gtot= #,691356

4609 iteration 8 dev 9.801 T Gtot= 8.691362

47009

4800 COHERENT ADDITION model

4900 *** plot 6 with traffic S= 0.600, i.e. 0.1910 per area
5080 iteration 1 dev 23.319 % Gtot= 9.811287

5100 iteration 2 dev 5.019 ¥ Gtot= @.881096

5200 iteration 3 dev 1.398 Z Gtot=  0,903097

5380 iteration 4 dev 0.418 T Gtot= 6.969928

5400 iteration 5 dev 0.128 7 Gtot= 0.912041

5508 iteration 6 dev 0.939 Z Gtot= 0.912694

5600 iteration 7 dev 0.012 2 Gtot=  9.912896

5709 iteration 8 dev 0.084 2 Gtotw 9.912958

5800 iteration 9 dev 0.091 7 Gtot= 0.912977



5900
60090
61008
6200
6300
6400
6500
6600
6769
6800
6900
7000
7100
7200
7300
7400
7500
7600
7760
7800
7900
8600
8169
82¢0
8300
8400
8500
8600
8760
8800
8900
9000
3100
9200
93300
9490
9500
9600
9700
35¢0
93990
10000
10169
10200
10300
18490
19500
10609
10760
168090
169900
11000
11108
11209
11300
11460
115600
11600
11708
11868
11980
12000
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iteration 10 dev 0.000 7

COHERENT ADDITION model

**%*% plot 7 with traffic §=
iteration 1 dev 27.895 %
iteration 2 dev 7.026 7%
iteration 3 dev 2.378 %
iteration 4 dev 0.888 %
iteration 5 dev 8.344 2
iteration 6 dev 9.135 X
iteration 7 dev ©.053 2
iteration 8 dev 9.021 2
iteration 9 dev 0.668 Z
iteration 10 dev 8.003 %
iteration 11 dev 0.901 2
iteration 12 dev 0.601 %

COHERENT ADDITION model

*%% plot 8 with traffic S=
iteration 1 dev 32,695 %
iteration 2 dev 9.461 %
iteration 3 dev 3.813 %
iteration 4 dev 1.744 %
iteration 5 dev 0.844 %
iteration 6 dev 0.419 %
iteration 7 dev 0.21t %
iteration 8 dev 0.167 Z
iteration 9 dev 8.654 %
jteration 10 dev 0.027 2
iteration 11 dev 0.9014 %
iteration 12 dev 0.087 2
iteration 13 dev 8,064 %
iteration 14 dev 0.802 %
iteration 15 dev 9.601 %

COHERENT ADPDITION model

ki plot
iteration
iteration
iteration
iteration
iteration
iceration
iteration
iteration
iteration
iteration 10
iteration 11
iteration 12
iteration 13
iteration 14
iteration 15
iteration 16
iteration 17
iteration 18
iteration 19
iteration 20
iteration 21
iteration 22
iteration 23
iteration 24

OO S WD P e

dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev
dev

9 with traffic S§=

37.728
12.374
5.849
3.237
1.941
1.218
9.785
9.515
0. 341
9.228
9.153
§.103
0.069
0.047
9.032
0.021
0.015
0.619
0.807
9.095
6.003
9.002
9.001
0.001

8 2R PP OE SE 2O PR R O TE SE TN YRR RN

Gtot=

0.700,
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=

9.84090,
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=

0.960,
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=
Gtot=

0.912983

i.e. 60,2228 per area

8.995863
1.117571
1.166145
1.185379
1.192996
1.196003
1.197196
1.197669
1.197856
1.19793¢
1.197960
1.197971

i.e. 0,2546 per area

1.197634
1.397677
1.497506
1.547551
1.572799
1.585591
1.592087
1.595391
1.597872
1.597928
1.598364
1.598586
1.598699
1.598756
1.598785

1.e. 8.2865 per area

1.417942
1.7325@6
1.927448
2.0651208
2.131409
2.184148
2.219172
2,242584
2.258304
2.268889
2.276031
2.280856
2.284119
2.286327
2.287821
2.288833
2.288519
2,289983
2.290297
2.290519
2.290654
2.290752
2.299818
2.290863
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12160 COHERENT ADDITION model
12200 **% plot 10 with traffic S= 1.000, i.e. 0.3183 per area

12300 iteration 1 dev 43,806 % Gtot= 1.658219
12490 iteration 2 dev 15.825 %7 Gtot= 2.136255
12590 iteration 3 dev 8.674 % Gtot= 2.503141
126090 iteration 4 dev 5.748 ¥ Grot= 2.800184%
12700 iteration 5 dev 4.254 7 Gtot=  3.852267
12800 iteration 6 dev 3.387 % Gtot= 3.274786
12969 iteration 7 dev 2.844 T Gtot= 3.477861
13890 iteration 8 dev 2,489 7T Gtot= 3.668657
13100 iteration 9 dev 2,255 % Gtot= 3.852674
13209 iteration 190 dev 2.105 % Gtot=  4.034522
13300 iteration 11 dev 2.018 Z Gtot=  4,218452
13400 iteration 12 dev 1.983 ¥ Gtot= 4.4088773
13500 iteration 13 dev 1.994 % Gtot= 4.619267
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Appendix C ALTERRATIVE DERIVATIONS OF EXPRESSIONS OBTAINED DURING
THE PREPARATION OF THIS THESIS

Although not of great additional value, appendix C has a historical
value to the author as it describes the (roundabout) way the

results of this thesis have been derived.

The image-function approach to find spatial distributions stems
from an attempt to formally prove that any spatial distribution of
traffic yields a higher throughput than a é~distribution, for which
all packets have the same area mean power. This proof was intended
to give the observation that increasing the differences in received
packet power increases capacity of the multiple access channel a
more formal basis. A proof was not found, but it soon appeared that
Laplace transformation provides a very useful method to analyse the

spatial distribution of traffic.

One of the first results was the derivation of the probability of
loss Fz n in the coherent case, later followed by an analogous

’
expression for I - Both original calculations are in appendix C.

They start off wi;h expressions used by Arnbak and Van Blitterswi jk
in {1]. Their model of propagation, spatial traffic distribution
and interference signal addition plays a key role in this thesis.
The ring and quasi-constant distributions described have been used

as verification of equations derived in this paper.

The neat form of the coherent analysis equation giving the relation
between images of traffic offered and throughput was surprising.
However, despite many efforts to solve the equation, general
solutions have not been found. Professor R. Prasad proposed the
Gauss-Laguerre numerical integration method which can be used for
analysis (find S(p), given G(p)). Eventually its possibility to

support iterative computing for synthesis was recognised.

With coherent addition, simple analytic solutions are not likely to
be found in both analysis and synthesis, as even simple examples
usually result in non-standard iategrals. It must, however, be said
that a lot of time was lost in trying to solve Integrals having a

singularity in the point v=0.
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Only after comparing Laplace transforms with characteristic

functions, the background of thls problem was understood.

Compared with coherent addition, the incoherent case was more
stralghtforward to derive and image functions could easily be

removed in the results. Many examples have been included.

The very neat universal expression found for the conditional
probabllity of 1loss Iz,n’ containing an image function sampled in a
point v=ZopB, explained the succes of using image functions. These
appear to be useful to resolve the problem of convolutions in the
power domain. The mathematical way of modelling Rayleigh fading by
an exponential pdf yields equations which can be transformed quite

easily.

Only a few weeks before finishing this thesis, the asymptotic
expansion for high traffic loads was found. The derivation has been
carried out, but application of the results is lefr as a

recommendation.

In the following sections the relation with [1] is indicated as the

expressions were originally derived from [1,(28)] and [1,(40)].

C.1 Incoherent addition

Iz n(p) can be expressed in terms of the image function ¢{v) by

¥

Laplace transformation from the w to v domain. The variable z will
not be transformed. We start off with the relation (4.47)

describing the joint interference power pdf and its image
$"(v) «'T o+ f; (w). (C.1)
n

Translation by zpB in the v domain gives

= -

. B
> f; (w) e 2¥° | (C.2)

n

$"(vtzp?) N

Multiplication by w of the original, corresponds to a (7%;)—
differentiation of the image (A.1.5)
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I
- %; pB ¢n(v+zps) +LI +> wa f; (w)e_sz (C.3)
n
B . n—-1 8 B LI B .1 —zwa
-np ¢ (vtzp") ¢'(vizp ) €I > wp fp (we (C.4)
n

Integration over z of both original and image gives

Z B
z L 0 i -
-6 (v+z0P) zgo « Gj dz wp® an(w) e 2P (C.5)

Integration of the original from zero to infinity over w now yields

Iz n(p), as this integration equals the definition (4.3) of Laplace
2

transforms for v=0

I (0 = 1-4"zeh), which equals (5.1).
»

C.2 Coherent addition

We assume coherent addition of interfering packets. This means that
the random phase terms of the signals hardly vary during the
capture time tw’ so wideband phase modulation or large Doppler
frequency shifts are not incorporated in the model.

As Arnbak and van Blitterswijk have shown, for a channel with
uncorrelated Rayleigh fading for all packets, the conditional
probability of loss for a packet in the presence of n other packets
is {1(28)]

— - n -~ —
F = Prob{loss[n,20}= ff fﬁ(pn)fg(ps) ——:————:—dpndps « (C.6)
Z,n 00 n ) Zopn + Pg

Given a normalised receiver distance p at which the test packet is
transmitted with n contenders in the same timeslot, Iz’n(p) gives
the probability that the packet will not capture the common
receiver, with threshold Z;. Equation [l,(AO)] indicates that for a
noiseless channel with uncorrelated Rayleigh fading for the n+l

packets, in the coherent case [1,(40)]

-] Z o
A - oP -
Prob{loss|n,zg,0} 21, (p) = [ £5 (pn)*—:—E—:E dp_ « (C.7)
y 0 n 20pn+p
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C.2.1 Channel throughput in the coherent case

We now concentrate on the calculation of Fz,n' The double integral
in [1,(28)] equals a two-dimensional Laplace transform considered
In the origin of the image variables {u,v)=(0,0). The LII-image of
the integrand can be written in terms of the image g(v) of the pdf
of 58. In the two-dimensional plane we consider operations imposed

upen the Laplace pair

g'(w) g(v) <1 - f5 (1) £5 (x)- (c.8)
s n

Starting with scaling of the (u=x) variable pair
“zowem LT v = Eers () (C.9)
& (%o zo "B ‘Zg B ) ¥

Voelker and Doetsch [4,(46) at page 159] give the correspondence

@ II

n L 1 1 y S
S Zo ) g(virtuydr +IT o+ - T fﬁn(zo)fps(y). (C.10)
Here x can again be scaled to Zgx
o 11 Z
2o [ g"(Zohyg(whr—ydx 1 s f5 (x)f5 (y). (C.11)
0., & lo0 Z0 Zoxty B p ¥
u/Zyg n 5

A (isa) differentiation in the convergence area of the image
corresponds to multiplication (A.1.5) by the variable x of the
original. First we differentiate the lower limit of the integral;
a second term is generated by differentiating the integrand

itself.

o - I1 ZOX
-g"(w)g(v) + / g“(zol)g'(v+k 2-yda L1 fs f= . (C.12)
Zy Zoxty P P
u/Zy n s
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At this moment Fz n equals the original integrated over the first
H]

quadrant. As can be seen from the definition of Laplace

transformation, it also equals the image with (u,v)=(0,0)

substituted. After applying (4.4) we find

n
Fyn = 1 + Ojg (Zgh)g'(r)da (C.13a)

or, after partial integration,

o

F, .= -nZg Df g(A)g'(ZOA)gn_l(Zok)dA (C.13b)

From this equation it was first noted that the probability Fz n of
]

a destroying collision, given a receiver threshold Zy and a number

of n interferers, can be stated purely in terms of the Laplace

transform g(.) of the mean packet power pdf f; .
S

® special case Zg=l
For the receiver with perfect capture (Zg =1), Fz q can be
¥
calculated quite easily.

Fon™ 0 ) g" (g (yd = = (C.14)

In this case Fz,n and therefore the average capture
probability are independent of the power classification of
the individual transmitters, e.g. spatial distribution will
not increase channel throughput. .

The average throughput of packets equals 1/n+1’ which is just
the probability for a test packet to be selected at random

from a set with n other contenders.

With (C.13) we can find the total channel throughput S by using the
series expansion of the exponential function after interchanging

Integration and summation.

S= G{1- LR F

ey ™ z,n]= =G E-GOf g'(Mexp{Gg(Zph) ] dA (c.}5)
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® Extreme of the throughput curve (channel capacity)
The top of the throughput S(G) curve can be found from

ds

B o 81 exp{Ga(zph) f[6-1-Ce(zgh) Jar= 0 (C.16)

Attempts with examples have not led to an explicit expression

for Gtop'

c2.1.1 Mellig transformg

To consider alternative possibilities to evaluate the throughput

equations, we now return to equation (4.56):

Z o
n a _
Fz,n OI dz Of fPS(zw) an(w) wdw (=4.56)

The Mellin transformation yields lmage functions defined as
o

M, (p) 2 of xP7L f(x) dx. (C.18)

Thus, if p a natural number and f(x) a pdf of a positive random

variable, then
= . .19
M, (p+l) oy (€.19)

The integral over w of (4.56) can be written as a convolution [12,

par.12 (37)], in the Mellin transform domain.

oo

My (p) M, (2-p) <« 7 » of f; (zw) £, (¥) waw, (C.20)
S n n s

where MP and MP are the Mellin transforms of fP resp. fP .
S n S n

Integrating the original, with upper limit Zn gives the transform

pair (from Zn to p domain)

1 M
-5 Mps(l+p) MPn(l—p) Y Fon (C.21)
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€.2.2 Spatial distribution in the coherent case

For Iz n(p), an expression can be found, containing the Laplace
H

transform gn(.) of the pdf of En' The aim of the next section is to

start off with this L} or II correspondence and again use
mathematical operations upon the original pdf which lead to the

40y]. -
integral Iz,n(p) in [1,( 0)] o

First the variable x is to be scaled to x/ZO

f5 (3= (€.22)

gn(Zou) <Ly or IT = 1 .
Zo P "2y
T

The original can be tramslated over a distance p-B. This . .
correspondence can be derived from a q=y—p_8 substitution oflthe

dummy variable in definition (4.3). With this substitution the

lower and upper limits are also translated, so the next

correspondence 1s only valid for a two-sided transform where we

integrate from -« to =.

-8, n L 1, xp*
exp{-p “u} g"(zZqu) 11 » Eofﬁn( ) (C.23)

At this point we integrate the image

[ I -8
| exp{-p B'\} g"(Zgr)ax  <FIT -+ E%; £5 (5—53—). (C.24)
u n

B

The denominator x+p-B appears after a translation over (—p- )
exp{p Bu} / exp{—p'sx}g“(zox)dx «TI or II+ ———f; Eﬁ)
u Zo(xtp ©) "n 70

As the pdf of En is different from zero only for positive mean
interference powers, the correspondence is again valid for both

one- and two-sided transforms.
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A (- %;) differentiation of the image, using the product rule
yvields

_ * _ I KIZO
e%3%(Zgu) -p® fexp{p P(u-r)}g™(zohrdn ¥I,1I+

b4
_pr
u xt+p n

(EE)

Now by rescaling the variable x, we recover the integrand of

Iz n(p) according to [1,(40)]

»

n -B < -B,u n LI Zox
g (u) - e " [ explp (5 -8 (Zgh)dx 1,11+
U/ZO 0

-, f5 (x)
Zox+p B Pl’l

Taking the value at u=0 of the image gives Iz n(p) of (C.7) after
»
applying (4.4) and (4.6)

I, _(p) = 1 - p-Bofexp{—p_Bl}gn(an)dl (C.25)
For practical calculation, a more often convenient form is

[}
I () = 1 - 0] e Vg™ (zgvolydv, (C.26)

where we have substituted A=vp8. This form can for instance be used

with Gauss-Laguerre numerical integration.
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Appendix D  ANOTHER EXAMPLE OF A SPATIAL DISTRIBUTION

A study by Joanna Fronczak [17] 1s Interesting because the
differences in mean power introduced here by spatial distribution
are the same as the power differences by Rayleigh fading in the
ring model. See section 4.2.1 example 4. Furthermore, this
distribution is a valuable addition to the sections 6.7 and 6.8. As
distinet from the ring model, in this example packets are received
with different mean power, but the moments of the pdf remain

bounded. The area mean power has a pdf
ffgps)= h exp{-hps}. {=4.16)

Using (1.14) this corresponds to

&

G(p)= 5= 2} exp{-np ™"} (=4.17)

24;

As shown in example 3 of chapter 4, the Laplace image of the mean

packet power pdf is

g(v)= = (=4.18)

The unconditional mean received power Uy equals h. In section 4.1.3

we have chosen h=l.

D.1 Capture probability

We will initially discuss the throughput without assuming G to be
large. Fz L, can be found by using (4.57)

- -]
h h
F = 1- Oj(x+zo] (x + h) dx
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A Gaussian hypergeometric solution of this integral is given by [8,
(3.197) on p 286]. We may calculate the total traffic throughput as
given by (6.26)

-]

h hG
S= G exp{-G} OI i) 2 exP{Zol+h} dX.

We substitute the inverse function x 4 g+(v):

1
cx] d
S =12y G exp{~G} uf (fﬁiof})x}){‘

1 Zodx

- Gx d 1
= e OI ¢ dx (1+(Zo—1)x) Zo-1

After partial integration and applying [8,(3.352.1)] we find

—GZ
2,46 exp{===0 Z,6 G
0 -6 1 P17 -1 0 ]
§= E -= 4+ 0—— [E1 -Ei
Zy-1 Zy Zy-1 [ (20—1) (20—1]] ’
A P 1
with the exponential integral Ei(x) = - fe—tt” dt.

-X

The total traffic throughput can be written as the series

expansion
Zp-1=- 1n 2 Z InZy - Z,45 +1
0 0 0 1 0 0
= -2 3 - -
S =G -G zo[————z-—(zo_l) ]+6 [zo_l](2 )7 } - ...

The limit S=1—.=_'-G can be derived by expansion of 1n{1+(20-1)} or by
using 1'Hépital's rule.
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D.2 Conditional capture probability

The integral

2 1 -A i N -n
Iz’n(p) 1 Uf e " h%(Zgp"A + h) T da

is solved by using [8,(3.353.2) on p311]:

n—-1

© - -1l — .

e Xdx  _ 1 I P N O MR T -h
/ o L (e %) - wnTe  Bl(ze
" (e SR k=1 ’ °

Z =
oP
with n>2.

With unity written as the n-th term of the summing we find

h =1 —h
La® = o [-(z;;v]n explz s} Eil{zwl
n
-1 [k K
oL et (Fom) ow T
k=1

ke k. . e . e . . o . .

The throughput per normalised unit area is found directly from

(6.3)

S(p)= ge ¢ 7hP ;ngv OI exp{-sp_4+ hG

h
Z L,
0(5 ZO)

} ds.

A closed-form solution has not been found.

)
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Appendix E

ASYMPTOTIC EXPANSION BY PARTIAL INTEGRATION FOR LAPLACE INTEGRALS

ne>

For ease of notation we write: E: {g(n)

(a+vy )"

B
[~

24 Vem®

exp{Gg(Zgr) =G}

>
1

The coherent analysis equation (6.l14) becomes

s(v) = = ] 7. axe
0

Three steps of partial integration yield

Y
—

- X B 27 d
s{v) = - + = dX
M= T ’0 Zg f a7y
® Eo0= ZgE L
_legvw 2517 Z£9%152 dy
Zgg'(0) 0 G Zf 51

® d £2 &%z 1

"Z'g [ ailzgey 23] 7%

V() £20172061%2™
Zoy T X TZg g

I SLCAD S W ') B M CO BV

Zomy GZguT 629 ¥y

, = 6383220828187 £28281 + Zpf)83g]  3%8)3td

a2 A + 3 G
_ w _ (v ' V " " (v £3
Zowy 67 u% G Zg u? _é—é_? 57&31 ui " BT(E)' ui
vy U3 =
+3GZQ "Iq + GI satsea dx

which is used in (6.24)

dy
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