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Abstract

In biometric verification, special measures are needed to prevent that a dishon-
est verifier can steal privacy-sensitive information about the prover from the
template database. We introduce an improved version of the zero leakage quan-
tization scheme, which optimizes detection performance in terms of the false
rejection ratio. Our scheme ensures zero leakage, that is, zero mutual informa-
tion between auxiliary verification data and the protected enrolled secret and
guarantees a uniformly distributed secret. Moreover, our solution replaces the
helper data in the template database by a user specific threshold and eliminates
the pre-distortion in the verification phase, which allows very rapid verification
algorithms. Although the false rejection rate was only reduced by 20% for well
correlated biometric features, it can be shown that this particular scheme achieves
optimal detection under our requirements.

1 Introduction

The application of biometrics for authentication or identification purposes remains a
challenging problem. A secret derived from the biometric features can be protected
against theft by applying a cryptographic hash function. However, this protection
requires the secret to be exactly reproducible, which is difficult with noisy biometrics.

To handle the variations caused by the noise, various techniques have been proposed
that store user-dependent data to reproduce the enrolled secret. At the same time this
data can leak information about the enrolled secret, which effectively weakens the
secret. For an adversary who possesses this auxiliary data it becomes easier to guess
the enrolled secret. Therefore we wish to minimize the information in the auxiliary
data about the enrolled secret. In theory such leakage even can be made zero [1, 2].

Template protection, as described above, suffers from a reduced detection perfor-
mance compared to continuous classifiers [3]. Especially for a practical application in
which the number of biometric features is limited, one wishes to minimize the false
rejection probability, since the alternative, namely applying an error correcting code
that can handle a large number of errors, will reduce the number of effective bits in
the secret even further.

In this work we introduce a modification of the zero leakage quantization scheme
[1], which provides an improved solution in terms of false rejections, while maintaining

jdgroot
Typewritten Text

jdgroot
Typewritten Text
In Proceedings WIC Symposium on Information
Theory in the Benelux, Boekelo, May 24-25, 2012

jdgroot
Typewritten Text

jdgroot
Typewritten Text

jdgroot
Sticky Note
Accepted set by jdgroot

jdgroot
Typewritten Text

jdgroot
Typewritten Text



zero leakage. Moreover, the solution requires a less complex verification phase, which
allows a very rapid verification procedure. Although our new solution does not require
a specific distribution of the biometric features, we quantify the performance based on
a Gaussian distribution.

The paper first gives an overview of various biometric descriptions that exist in
literature and describes under what conditions these descriptions are equivalent. Al-
though the results are highly intuitive, we think that this gives a better understanding
of the properties of the biometric features we have to deal with. The derived relations
allow us to benchmark results with papers using a different biometric description.

The remainder of the paper is structured as follows. In section 3 we will derive
the constraints required to obtain zero leakage. This is the basis of our optimization
approach and low-complexity implementation explained in section 4. The detection
results are given in section 5, followed by a discussion and conclusion on our results in
sections 6 and 7 respectively.

2 Gaussian biometric models

In literature there appears to be a common generic model, but with various mathe-
matical descriptions. Yet, some of these descriptions only cover a subset of the entire
class of descriptions by the generic model. A common modality is the assumption of
M i.i.d. features, at least after pre-processing. The values observed during enrollment
are commonly noted as X, whereas the verification vector is represented by Y , which
are both of length M .

However, the various papers use different descriptions for the relation between the
enrollment and verification sample. We have identified at least four approaches which
we will refer to as the ‘additive channel’, a common communication theoretical concept
[4, Chap. 9], the ‘hidden template’ [5], the ‘within-/between-class distribution’ [3] and
the ‘joint Gaussian’ [6].
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Figure 1: Biometric feature relation descriptions

The ‘additive channel’ description, depicted in Figure 1(a), is simply a noisy channel
with independent additive Gaussian noise. Since this introduces a different variance at
the in- and output, i.e. between the enrollment and verification samples, an additional
attenuation α can be introduced. The variables in this description are distributed as

X ∼ N (µX , σ
2
X) and N ∼ N (µN , σ

2
N) (1)



Table 1: Overview of biometric descriptions found in literature

Model EX EY EX2 EY 2 EXY EY |X SNR

Channel µX µX + µN σ2
X α2σ2

X + σ2
N ασ2

X + σ2
N αx α2σ2

X/σ
2
N

Template µT + µNe
µT + µNv

σ2
T + σ2

Ne
σ2
T + σ2

Nv
σ2
T Eq (6) σ2

T /σ
2
Nv

W/B-cls 0 0 σ2
t σ2

t σ2
b (σ2

b/σ
2
t )x σ2

b/σ
2
w

Joint G 0 0 1 1 ρ ρx ρ/(1− ρ)

The ‘hidden template’ description, depicted in Figure 1(b), consists of two parallel
channels, both with independent additive Gaussian noise Ne and Nv for the enroll-
ment and verification sample respectively. The common input of both channels is the
biometric template T . The variables in this description are distributed as

T ∼ N (µT , σ
2
T ), Ne ∼ N (µNe , σ

2
Ne

) and Nv ∼ N (µNv , σ
2
Nv

), (2)

The notion of a ‘within-/between-class distribution’, with variance σ2
w and σ2

b re-
spectively, is a special case of the ‘hidden template’, in which

{
µT = 0

µNe = µNv = 0
and





σ2
T = σ2

b

σ2
Ne

= σ2
Nv

= σ2
w

σ2
b + σ2

w = σ2
t

(3)

In this work we prefer to use the ‘joint Gaussian’, which was introduced by [6]. This
is described as a probability density function with parameter ρ, which directly relates
to the Signal-to-Noise ratio (SNR)

fX,Y (x, y) =
1

2π
√

1− ρ2
exp

(
−x

2 + y2 − 2ρxy

2(1− ρ2)

)
(4)

The joint probability density function allows us to derive the conditional density func-
tion

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

1√
2π(1− ρ2)

exp

(
−(y − ρx)2

2(1− ρ2)

)
(5)

which is required to calculate the genuine verification error. Note that this conditional
distribution is symmetric around ρx.

An overview of the description parameters is shown in Table 1. The conditional
expectation EY |X for the ‘Hidden template’ description can be derived by using Bayes’
rule

EY |X = ET |X + µNv =
(x− µNe)σ

2
T + µTσ

2
Ne

σ2
T + σ2

Ne

+ µNv . (6)

Although the relations between the descriptions are straightforward, they are rel-
evant since it enables us to compare the results obtained with different biometric de-
scriptions.



3 Zero leakage constraint

In [1] we have introduced the pre-distortion function to achieve zero leakage. Once this
function is set to the cumulative distribution function (CDF) of the biometric feature
x, i.e.

u = g(x) = FX(x) and v = g(y) = FX(y), (7)

the transformed features u and v will be uniformly distributed.
Subsequently, helper data defined in the transformed domain will be uniformly

distributed. However, a uniform distribution is not required to obtain zero leakage.
The actual constraint is given on the conditional helper data function, namely

fW (w|s = n) = fW (w) ∀n ∈ {0, . . . , 2N} (8)

as can be seen from the definition of leakage

I(W ;S) = H(S)−H(S|W ) (9)

= H(S)−
∫ q

−q
H(S|W = w)fW (w) dw (10)

= H(S)−
∫ q

−q

∑

n

fW (w|S = n)

fW (w)
P(S = n) · (11)

log2

(
fW (w|S = n)

fW (w)
P(S = n)

)
fW (w) dw (12)

= H(S)−H(S)

∫ q

−q
fW (w) dw (13)

= H(S)−H(S) = 0 (14)

Therefore, if the constraint of Equation (8) is satisfied, we can apply all possible trans-
formations to the helper data and maintain zero leakage, since a transformation will
not undo it. The transformation to a uniform distribution is just a convenient step to
make sure that the conditional distributions are equal.

4 Distortion adjustment

For the moment we will limit ourselves to a verification scheme that extracts just one
bit per dimension, i.e. N = 1. However, our method can be extended to a scheme in
which multiple bits are assigned per dimension, but we consider this to be beyond the
scope of this paper.

In the verification phase we added the helper data w to our distorted sample v =
g(y) and compared it with 1/2 to determine the bit value. However, for a single bit
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Figure 2: The improved zero leakage quantization scheme, which determines the opti-
mal threshold during enrollment instead of additive helper data, so we store/transmit
τ which is the quantization threshold during verification.

this can be done differently, as is shown for ŝ = 0

v + w = FX(y) + w <
1

2
(15)

FX(y) <
1

2
− w (16)

y < F−1X

(
1

2
− w

)
= τ (17)

So, instead of sending w we can transfer helper data in the form of a user-specific
threshold τ to the verifier. This still achieves zero leakage according to our conclusion
of the preceding section. However, it requires the inverse pre-distortion function F−1x (w)
to exist. This is no problem in practice, but excludes discontinuous distributions.

For each enrollment sample x, we introduce a sister point x′ with the same helper
data w = w′, but with opposite secret s′ = ¬s. The relation between the two points is
given by

FX(x′) =

{
FX(x) + 1

2
x < 0

FX(x)− 1
2

x ≥ 0
= Fx(x)−

(
s− 1

2

)
(18)

The relation between these points is graphically explained in Figure 3(a). Analogously
we define u′ = u− (s− 1/2) the corresponding sister point in the transformed domain.

Any helper data distribution function that satisfies Equation (8) maintains zero
leakage. This can be used to optimize detection performance, since the pre-distortion
function FX(x) introduces a strong unequal scaling between centered and deviating
verification sample distributions (equation (5)). A distribution close to zero yields a
much wider distribution in the transformed domain than the distributions further away
from the center.

Figure 3(b) shows that a threshold at u = 1/2 is not optimal for this verification
distribution. In this example the large probability mass below u = 1/2 leads to a high
false rejection ratio. Ideally we would like our helper data to shift the verification dis-
tribution away from the quantization boundary in order minimize this error. However,
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Figure 3: Background and noise distributions.

this leads to a trade-off, since the sister distribution at u′ will inevitable be moved
closer to the quantization boundary.

Centering the distorted distributions on the quantization interval is not optimal in
terms of error probability for a genuine user. In order to improve our performance
we try minimize the error probability for a genuine user. This error is defined as the
probability of observing a different secret during verification, hence

pge,s = P(s 6= ŝ) =

{
P (y ≥ τ) s = 0

P (y < τ) s = 1
=

{
1− Fy|x(τ |x) s = 0

Fy|x(τ |x) s = 1
(19)

in which Fy|x(y|x) is the conditional Cumulative Distribution Function (CDF) of our
biometric feature. Moreover, we use the above defined threshold τ , so we can do the
optimization in the original untransformed domain. For the optimization we solve the
following equation

τ = arg min
τ

(FY |X(τ |x)︸ ︷︷ ︸
pge,1

+ 1− FY |X(τ |x′)︸ ︷︷ ︸
pge,0

), (20)

in which x′ is the biometric sister point of x.
The biometric samples x and x′ in Equation (20) can be interchanged, but this

yields the same result. For this particular derivation we assumed u ≥ 1/2, i.e. s = 1
and s′ = 0. An example of this situation is depicted in Figure 3(b).

Equation (20) can be solved by taking the derivative with respect to τ and setting
it equal to zero

d

dτ

[
FY |X(τ |x) + 1− FY |X(τ |x′)

]
= 0, (21)



which yields the following solution for our model described in Equation 5

τ = ρ
x+ x′

2
. (22)

A schematic representation of this verification scheme is depicted in Figure 2.
Although the math is seemingly simple, the solution gives an important insight.

The auxiliary data, in our case a threshold, does not provide any information to the
adversary on which side the original sample was. This can be understood by noting
that x and x′ can simply be swapped while obtaining the same result (τ = τ ′).

5 Detection performance

The detection improvement, i.e. the reduction in genuine verification error, is for most
features comparable to that of the initial zero leakage scheme [1] as can be seen from
Figure 4(a). However, an relative improvement of approximately 20% is obtained for
well correlated biometric features, i.e. ρ = 0.95 or SNR ≈ 9.7 dB, as is depicted
Figure 4(b). Both figures indicate the approximate regions a genuine and impostor
feature is likely to be in. This assumes the genuine user’s features to have a correlation
0.75 < ρ < 0.95, while the impostor’s features have correlation ρ = 0.
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Figure 4: Detection performance of the improved zero leakage scheme

The influence of parameter ρ can directly be noticed from the relative detection
improvement. In case one would fix this parameter to ρ = 1, i.e. assuming a very well
correlated biometric, the detection rate for inferior biometric features, that is features
with a relatively low correlation ρ or SNR, are reduced as can be seen in Figure 4(b).
This is caused by the fact that the features during verification are distributed around
ρx according to our model, which requires the scaling by ρ.

6 Discussion

An important limitation shared with the original zero leakage scheme is that the system
designer needs to know the distribution of the biometric features in advance. Moreover,



the improved scheme even requires the existence of a continuous inverse of this function
to exist. However, this might not be a serious limitation since in general the biometric
feature distribution will be continuous, which implies that the inverse CDF will also
be defined everywhere on the domain (0, 1).

A limitation of our optimization is that a viable solution can only be found for
a single bit per dimension (N = 1) and if the conditional CDF of the verification
features is a convex function for FX|Y (x|y) ≤ 1/2, otherwise multiple solutions exist
for Equation (20). Our model, Equation (5), perfectly fulfills this requirement, but a
simple counter example is a Gaussian Mixture Model (GMM) with a local minimum in
its PDF. We do not yet have a general solution to handle these kind of distributions.

7 Conclusion

We have proposed an optimized solution for a biometric verification system that offers
zero leakage and a uniformly distributed secret. We have shown that the optimal solu-
tion can simply be implemented as a user-dependent threshold. Our solution reduced
genuine verification errors by approximately 20% for well correlated biometric features.
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