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ABSTRACT

Biometrics gain increasing interest as a solution for many se-
curity issues, but privacy risks exist in case we do not protect
the stored templates well. This paper presents a new verifica-
tion scheme, which protects the secrets of the enrolled users.
We will show that zero leakage is achieved if certain criteria
are met and we benchmark the performance of this scheme.
We quantify performance loss in terms of detection and false
acceptance rate and capacity of the biometric channel, which
are slightly lower than those of the current leaky methods.

Index Terms— biometrics, verification scheme, leakage,
privacy protection

1. INTRODUCTION

Biometrics gain increasing interest as a solution to many se-
curity issues. New passports include biometric data of the
owner and laptops nowadays almost always include a finger-
print reader for login.

It is likely that biometric templates will be stored in a pub-
lic database for verification purposes. Identity theft becomes
a very real threat if we do not protect the confidentiality of
the enrolled data. Applying a encryption-decryption scheme
will not work since a dishonest verifier is then able to steal the
decrypted secret and use it to his advantage.

A secret extracted from passwords can be protected
against a dishonest verifier by applying a cryptographic one-
way function. When the user authenticates himself, the same
hash is applied and only the hashed passwords are compared.

Biometric features however are not exactly reproducible.
Various solutions have been proposed to handle these devia-
tions by mapping the most likely values for an individual to
a single value of the secret. Among others the Fuzzy Com-
mitment Scheme (FCS) [1], Helper Data Scheme (HDS) [2],
Fuzzy Extractors [3], Fuzzy Vault [4], Cancellable Biomet-
rics [5] and Likelihood based approaches [6, 7] have been
proposed. A common property is that individual prover-
dependent ‘helper data’ is required for mapping [2]. The
required helper data might leak information about the secret.
A dishonest verifier could exploit the information.

Introduction of the privacy protection deteriorates the per-
formance in terms of detections [8, 9]. Our experience shows
that practical (low-dimensional) biometrics require careful
design to avoid undesirable performance losses, although
for the limiting case the secret capacity is not affected by a
privacy protection scheme [10].

The second section of this paper introduces a new scheme
which is capable of leaking no information about the en-
rolled secret. In section 3 we study under which conditions
zero leakage is achieved. We also extend the commonly
used model that an attacker only has access to the template
database. We assume that he also has some a priori knowl-
edge about the approximate biometrics statistics of a partic-
ular prover. Subsequently we will derive the performance
loss of the scheme in terms of detection rate in section 4 and
channel capacity in section 5. Finally we will discuss and
conclude on our results in sections 6 and 7.

2. A NEW VERIFICATION SCHEME

We consider a verification scheme as introduced in [2], which
consists of an enrollment and verification phase. In the En-
rollment phase the prover provides his biometric data x =
(x1, . . . , xM ), which the systems stores safely in the hashed
form {h(s), w}, where s is a digitized version of x. In the
verification phase the prover provides his correlated biomet-
ric data y = (y0, . . . , yM ) to prove his identity. The entire
scheme, including our modifications, is depicted in 1.

We extend the scheme with a pre-distortion function, ui =
gi(xi) and vi = gi(yi), before creating or applying the helper
data. The arbitrary continues and bounded probability densi-
ties of the biometric features are transformed to uniform dis-
tributions ui, vi ∼ U(0, 1) by the pre-distortion function.

Any r.v. x with a continuous distribution FX can be trans-
formed to a uniform distribution U(0, 1), by distorting it ac-
cording to u = FX(x). In fact, since 0 ≤ FX(x) ≤ 1 we
know that for 0 ≤ u ≤ 1,

FU(u) = P(U ≤ u) = P(X ≤ x) = FX(x) = u. (1)

So the probability density of u is uniform, namely

fU(u) = 1 for 0 ≤ u ≤ 1, (2)
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Fig. 1. Zero leakage verification scheme. Extension of [2] with pre-distortion function g.

and zero elsewhere. Therefore we choose gi(x) = FXi(x).
This yields zero leakage between helper data wi and the cor-
responding enrolled secret si as will be shown in the next
section.

On u = (u1, . . . , uM ) we subsequently define 2N quanti-
zation intervals, each having a width of q = 2−N , to obtain a
secret s = bu/qc.

Helper data w = q s + q/2 − u is used to center the pre-
distorted enrollment samples, u, on the quantization interval.
The helper data might push the verification samples, vi =
gi(yi), outside the standard interval, therefore a modulus 2N

operation in applied directly after quantization to obtain the
estimated secret ŝ, hence

ŝ =

⌊
g(y)− g(x)

q
+

1

2

⌋
+ s mod 2N . (3)

3. LEAKAGE ANALYSIS

We assume that the attacker knows the scheme as depicted
in Fig. 1, including the applied pre-distortion function g, and
that he knows all information in the public database. This
knowledge should not leak any information about the provers
secret s.

To prove that the scheme indeed achieves zero leakage we
extend the results of [2]. Our helper data is obtained by wi =
q·bui/qc+q/2−ui. Since the transformed enrollment sample
ui is distributed uniformly, the helper data will be distributed
uniformly as well, moreover it is independent of s,

fW(w|S = n) = fW(w) =

{
1
q for − q

2 < w ≤ q
2

0 otherwise
. (4)

The leakage expressed as mutual information between
helper data and secret can be calculated as

I(W ;S) = H(S)−H(S|W ) (5)

= −
2N−1∑

n=0

P(S = n) log2 P(S = n)

+

q/2∫

−q/2

2N−1∑

n=0

fW (w|S = n)P(S = n)

log2
fW (w|S = n)

fW (w)
P(S = n) dw. (6)

Due to the uniform distribution of the helper data (4) the sec-
ond term simplifies to

H(S|W ) =

q/2∫

−q/2

1

q

2N−1∑

n=0

P(S = n) log2 P(S = n) dw. (7)

Working out the integral yields exactly the entropy H(S) of
the secret, but with opposite sign in (5), therefore the leakage
is zero. Also note that due to the uniform distribution each
secret is equally likely, hence

P (S = n) = q ⇒ H(S) = N. (8)

The situation changes if an attacker has a better under-
standing of the biometric distributions than the system de-
signer, who determined the pre-distortion function. To illus-
trate this case, we will assume the population distribution to
be Gaussian N (0, 1). Suppose that the attacker knows that
a certain prover belongs to a subgroup of with average and
variance (µg, σ

2
g). The attacker is unaware of the provers in-

dividual biometric, but the group statistics are more specific
than those of the entire population (µp = 0, σ2

p = 1), hence
σ2
g < σ2

p.
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Fig. 2. Leakage for an informed attacker in a mismatched
scheme for N = 2 bit/dimension.

In this case the amount of information IA an attacker
eventually has consists of a priori knowledge given by the
group distribution and additional information from the helper
data, which both depend on µg and σ2

g . The a priori knowl-
edge can be calculated as follows

IA = H(S)−H(S|µg, σ
2
g). (9)



µp

In
fo
rm

a
ti
o
n
[b
it
s]

a priori

helper data

total

-2 g−1(q) 0 g−1(3q) 2
0

0.5

1

1.5

2

Fig. 3. Information for an informed attacker in a scheme with
N = 2 and a group variance σ2

g = .063. The quantization
interval boundaries are depicted as dotted lines at g−1(q),
g−1(2q) = 0 and g−1(3q).

in which H(S) = N , the number of bits, and H(S|µg, σ
2
g),

the actual entropy of the secret, which can be calculated by
the following probability function

P (S = n) = FX

(
F−1
X (q (n+ 1))− µg

σg

)

− FX

(
F−1
X (q n)− µg

σg

)
. (10)

The leakage can be calculated by using (6) with

P(S = n) =

∫ q(n+1)

qn

fgp
(
g−1(ν)

)
dν, (11)

fW(w|S = n) =
fgp
(
g−1(q(n+ 1/2)− w)

)

P(S = n)
, (12)

in which fgp describes the ratio between the actual (group)
density and the (population) density assumed in the detector
for a Gaussian biometric,

fgp(x) =
1

σg
exp

(
x2

2
− (x− µg)

2

2σ2
g

)
. (13)

Note that (12) is only valid for n ∈ {0, . . . , 2N − 1) and
−q/2 < w ≤ q/2 and is zero otherwise. By combining (11)
and (12) we get fW(w), which we insert in (6). An attacker,
who knows for example that a provers feature is very close
to one of the quantization boundaries, i.e. µ ≈ g−1(q) and
σ < 1, is able to acquire a significant amount of the total
information from the helper data. In Fig. 3 this is illustrated
for a Gaussian distributed biometric.

4. DETECTION PERFORMANCE

In order to derive the performance in terms of false rejection
rate (FRR, β) and false acceptance rate (FAR, α) we derived
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Fig. 4. Receiver operator curves for M = 10 and ρ = .9.

the probability of accepting the verification for a single di-
mension first. For ease of analysis we give an example for
i.i.d. standard normal features. Furthermore the biometric
features of genuine provers during enrollment and verifica-
tion are assumed to be correlated by 0 < ρ < 1, whereas the
impostors’ features are uncorrelated, i.e. ρ = 0.

By integration over the acceptance regions defined by (3),
where ŝ = s, we obtain the acceptance probabilites pa(gen)
and pa(imp) for a genuine prover and an impostor respec-
tively. For benchmarking we include the performance of a
Quantization Index Modulation (QIM) scheme with helper
data [2] and a likelihood continuous classifier [8], which can
be obtained in similarly. The other schemes however have the
possibility of adjusting some kind of threshold, i.e. the quan-
tization width q or likelihood score s respectively, whereas
the zero leakage scheme has none. The q in the zero leakage
scheme is determined by the number of bits and cannot be
adjusted, since the scheme will lose its zero leakage property
in that case. Instead we allow a number of C < M · N er-
rors to occur between enrollment and verification. This can
be implemented as a C-error correcting code.

Since the chosen quantization width in the QIM scheme
influences the amount of leakage, this amount is also depicted
in Fig. 4 for a few operation points. The leakage of the con-
tinuous classifier equals 1 bit for every stored bit, since this
scheme requires the template to be stored in the clear.

5. CHANNEL CAPACITY

The biometric verification scheme can also be considered as
a 2N wide memoryless channel since it transfers the bits of
the secret from the enrollment to the verification phase. The
transition probability pn, for an order n error, can be derived
from (3), yielding for the capacity

CZ = max
p(s)

H(S)−H(S|Ŝ) = N +

2N−1∑

n=0

pn log pn. (14)
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Fig. 5. Channel capacity of the verification schemes.

Again we compare the channel capacity against that of
a continues classifier and a QIM scheme with helper data
(HDS) for benchmarking. As can be seen in Fig. 5, the con-
tinuous classifier provides an optimal capacity, but does not
protect against leakage. The QIM scheme is the most flexi-
ble by its quantization width q at the cost of leakage and the
zero leakage scheme requires a strongly correlated biometric
to achieve capacity close to the number of bits assigned to
each dimension.

6. DISCUSSION

We have shown that zero leakage can be obtained by apply-
ing a pre-distortion. However, a system designer needs to
know the biometrics distribution to obtain the required pre-
distortion function, which could be difficult to obtain in a
practical situation.

In this paper we have developed a model to compute the
leakage for an informed attacker and performance loss and
illustrated it by assuming Gaussian distributions. However,
the method is not limited to Gaussian distributions. In fact, it
can be applied to any biometric with a continues and bounded
distribution.

A topic for further study is the relatively high false re-
jection rate. The quantization width cannot be adjusted to
lower this value, since its boundaries are being dictated by
the inverse pre-distortion function. One solution, to prevent
these errors, is the application of an error correcting code.
However, error correcting codes demand a certain distance
between them, reducing the total number of available secrets
significantly, which, on its turn, will weaken the strength of
the entire scheme, despite there is no leakage.

The scheme provides a means to assign more than just one
bit per biometric feature. However, as it turns out, assigning
multiple bits is only interesting for biometrics with a strong
correlation between enrollment and verification. As can be
seen in Fig. 5, the capacity only converges to the number of
assigned bits (N ∈ {2, 3)) for a correlation coefficient very
close to one.

7. CONCLUSION

We have proposed a new biometric verification scheme which
achieves zero leakage and therefore essentially better protects
the identity of the enrolled users than previously published
schemes. We have quantified performance loss associated
with zero leakage, in terms of worsening of the false rejection
and acceptance ratio and in terms of capacity of the biometric
channel.

8. REFERENCES

[1] A. Juels and M. Wattenberg, “A fuzzy commitment
scheme,” in CCS ’99: Proceedings of the 6th ACM
conference on Computer and communications security,
1999.

[2] J.-P. Linnartz and P. Tuyls, “New shielding functions to
enhance privacy and prevent misuse of biometric tem-
plates,” in Audio- and Video-Based Biometric Person
Authentication. Springer Berlin / Heidelberg, 2003.

[3] Y. Dodis, L. Reyzin, and A. Smith, “Fuzzy extractors:
How to generate strong keys from biometrics and other
noisy data,” in Lect Notes Comput Sc. Springer Berlin /
Heidelberg, 2004.

[4] A. Juels and M. Sudan, “A fuzzy vault scheme,” Design
Code Cryptogr, vol. 38, pp. 237–257, 2006.

[5] N.K. Ratha, S. Chikkerur, J.H. Connell, and R.M. Bolle,
“Generating cancelable fingerprint templates,” IEEE T
Pattern Anal, vol. 29, pp. 561 –572, 2007.

[6] A.M. Bazen and R.N.J. Veldhuis, “Likelihood-ratio-
based biometric verification,” IEEE T Circ Syst Vid, vol.
14, pp. 86 – 94, 2004.

[7] C. Chen, R.N.J. Veldhuis, T.A.M. Kevenaar, and
A.H.M. Akkermans, “Multi-bits biometric string gen-
eration based on the likelihood ratio,” in Proc. IEEE
Int. Conf. on Biometrics: Theory, Applications, and Sys-
tems, 2007.

[8] E.J.C. Kelkboom, J. Breebaart, and R.N.J. Veldhuis,
“Classification performance comparison of a continu-
ous and binary classifier under gaussian assumption,” in
Proceedings of the 31st Symposium on Information The-
ory in the Benelux, 2010.

[9] F.M.J. Willems and T. Ignatenko, “Quantization effects
in biometric systems,” in Information Theory and Ap-
plications Workshop, 2009, 2009.

[10] J.-P.M.G. Linnartz, P. Tuyls, and B. Skoric, A
Communication-Theoretical View on Secret Extraction,
chapter 4, pp. 57–77, Security with Noisy Data.
Springer-Verlag Londen, 2007.


