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Abstract

We show the feasibility of implementing a new zero leakage quantization scheme
on biometric templates. In particular, we investigate the challenge that a sys-
tem designer has to model the feature distributions prior to actually enrolling
participants. For a Gaussian a priori model, we calculate the capacity and pri-
vacy leakage for the commonly used biometric dataset FVC2000 and compare it
to other verification schemes. We show that the zero leakage scheme achieves
an equal error rate of approximately 3.5% while model mismatch leads to an
average leakage of less than 0.1 bit per dimension. It outperforms quantization
index modulation, both in terms of prevention of leakage and equal error rate,
and binary quantization in terms of verification errors that can be tolerated.

1 Introduction

Biometric templates can be misused for identity theft, cross matching or function
creep. Preventing this has become a topic of interest. This is mainly because of the
threats associated with storing biometric templates and the associated risks of leakage.
Template protection schemes with helper data are known to mitigate this issue [1].

Recently [2] we have discovered an extension of these schemes to ensure zero leakage
by a nonlinear pre-distortion prior to the quantization scheme, to give the biometric a
uniform probability density. However, a disadvantage is that it requires the Cumulative
Distribution Function (CDF) of the entire population to be known –or at least to be
estimated– before the first user enrolls. The pre-distortion yields an equally distributed
secret and uniformly distributed helper data after quantization and thus zero leakage.

We will explore whether a system designer can approximate the pre-distortion as a
Gaussian CDF to ensure small leakage, without affecting authentication performance
substantially, compared to the known leaky Quantization Index Modulation (QIM)
with helper data [1]. As biometric data we use the features extracted from the FVC2000
fingerprint database as described in [3, 4]. Since the a priori model imperfectly approx-
imates the distribution, an attacker who knows the precise distribution of all enrolled
participants, gains from some information leakages, but less than from QIM systems.

2 Methods

2.1 Feature extraction

The fingerprint dataset used is the same dataset as in [3, 4]. The data consists of the
concatenation of horizontal and vertical squared directional fields [5] and the output of
4 Gabor responses with different angles [3]. The output of both methods is smoothed
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Figure 1: Biometric model, in which the hypothetical variable ξi generates biometric
Xi, that leads to enrollment sample Yi and verification sample Zi.

by a low-pass Gaussian window before sampling, which was set for an 8 pixel inter-
sample distance. A 16 × 16 sample grid was used, which results in 1536 features for
the 6 feature extraction methods. The sample grid is centered at the core point of the
fingerprints, i.e. the uppermost point of the innermost curving ridge.

2.2 Fingerprint capacity

In communication theory, the concept of capacity is often used as a theoretical maxi-
mum for the amount information that can be reliably send over a channel. A biometric
verification scheme can also be considered as a communication channel, in which we
try to send a message from enrollment to verification. Moreover it has been shown
that this capacity directly relates to the logarithm of the number of users that can be
identified uniquely. Therefore it would be interesting to estimate the capacity of the
biometric and compare it achieved capacity of the system.

Given the model in Fig. 1 we use Willems’ result [6] for identification capacity

C = I(Yi; Zi), (1)

with Yi the enrollment sample and Zi the verification sample of user i. In this model
the ‘hypothetical’ biometric ξi, a vector of i.i.d. Gaussian variables, is transformed
by an matrix W , such that the features Xi ∈ Rk become correlated. Moreover, each
measurement Yi and Zi is subject to uncorrelated additive Gaussian noise Ne and Nv

respectively.
The mutual information between enrollment and verification sample can be ex-

pressed as
I(Yi; Zi) = h(Yi) + h(Zi)− h(Yi,Zi) (2)

in which h(X) is the differential entropy function. The first term of equation (2) can
be calculated as follows

h(Yi) =
1

2
log2((2πe)

k|ΣX + ΣNe|) (3)

for X ∼ Nk(µ,Σ) distributed variables [7]. Since we have assumed the biometric Xi to
be uncorrelated with the additive noise Ne and Nv we can add the two corresponding
covariance matrices ΣY = ΣX + ΣNe .

The third term can be calculated in a similar way

h(Yi,Zi) =
1

2
log2((2πe)

2k|ΣY Z |) (4)

in which

ΣY Z =

[
E[Y 2]− E[Y ]2 E[Y Z]− E[Y ]E[Z]

E[ZY ]− E[Z]E[Y ] E[Z2]− E[Z]2

]
=

[
ΣX + ΣNe ΣX

ΣX ΣX + ΣNv

]
(5)



Combining equations (3) and (4) according to equation (2) yields

I(Yi; Zi) =
1

2
log2((2πe)

k|ΣX + ΣNe|) +
1

2
log2((2πe)

k|ΣX + ΣNv |) (6)

− 1

2
log2((2πe)

2k|ΣY Z |) (7)

=
1

2
log2

( |ΣX + ΣNe||ΣX + ΣNv |
|ΣY Z |

)
(8)

To simplify calculation of this value we diagonalize the covariance matrices by
choosing a proper orthogonal transformation V for the Yi and Zi samples as depicted in
Figure 1. This can be achieved by choosing the columns of V equal to the Eigenvectors
of ΣX and multiplying as follows

Y′i,j = V T ·Yi,j and Z′i,j = V T · Zi,j (9)

This operation is similar to a principal component analysis based on the covariance
matrix ΣX . Since we have assumed to noise to be uncorrelated with the biometrics and
with itself now both ΣX′ and ΣT ′ will only have non-zero elements on their diagonal.
Therefore we can write

I(Y′i; Z
′
i) =

1

2

k∑
i=0

log2

(
(ΣX′ + ΣN ′

e
) · (ΣX′ + ΣN ′

v
)

(ΣX′ + ΣN ′
e
) · (ΣX′ + ΣN ′

v
)− ΣX′ΣX′

)
i,i

(10)

which simplifies to a intuitive form in case one could observe Xi exactly, for instance
by enrolling the average of multiple fingerprints samples, such that ΣN ′

e
→ 0, hence

I(Y′i; Z
′
i) =

1

2

k∑
i=0

log2

(
1 +

ΣX′

ΣN ′
v

)
i,i

(11)

These equations for correlated variables extend the results of [8] for i.i.d. Gaussian
variables.

Based on our model it is not possible to observe covariance matrix ΣX directly,
since our observed samples Y and Z are always subject to additive noise. An estimate
can be obtained as follows. First calculate mean values over M observations and N
enrolled users. Subsequently calculate the average within-class covariance matrix Σw

and between-class covariance matrix Σb

Σw =
1

N

N∑
i=1

[
1

M − 1

M∑
j=1

(Y′i,j − µi)(Y
′
i,j − µi)

T

]
, with µi =

1

M

M∑
j=1

Y′i,j (12)

Σb =
1

N − 1

N∑
i=1

(µi − µ)(µi − µ)T , with µ =
1

N

N∑
i=1

µi (13)

respectively. We expect the noise contribution to be reduced by averaging over all
samples of a user, yielding our best estimate of the underlying biometric value, i.e.
Xi ≈ µi. Using this average in turn to calculate the covariance gives an approximation
of the biometric covariance, i.e. ΣX′ ≈ Σb. Similarly, the noise covariances can be
represented by ΣNe ≈ ΣNe ≈ Σw.



Wi

Si

Yi −

+

q/2

h(Si)

σb

b·cq q

Ui

h

public
DB

feat.
extr.

g

iSelV

F
Sel.

µ σb

−

Additionally stored data

σw

×

ECC

Figure 2: Enrollment of the fingerprints

2.3 Enrollment

During enrollment we made the features zero mean and apply the same orthogonal
transformation as described in section 2.2. However, there is one difference, we would
not be able to observe the verification samples under practical circumstances, therefore
we exclude them from calculation of the covariance matrix. To be able to compare the
same transformed features during verification we also store the subtracted mean value
and transformation matrix in our database and re-apply it prior to verification.

From the transformed features, a selection of K features is made based on their
signal to noise ratio, which is defined as between-class variance divided by within-class
variance, hence SNRi = (Σb)i,i/(Σw)i,i. Again this selection is stored to be used during
verification.

Finally, the between-class standard deviation σb is used to scale the features to unit
variance, which is required for the pre-distortion function g. For this work we have set
the non-linear pre-distortion function equal to the standard (0, 1) Gaussian CDF. The
undistorted features are used in a binary and QIM quantization scheme with helper
data for comparison. The entire enrollment is depicted in Figure 2.

2.4 Verification

Prior to verification we apply the same transformation, feature selection, scaling and
non-linear pre-distortion. Subsequently the user specific helper data is added and
the secret extracted by quantizing the value. An additional saturation is required to
prevent the observation of undefined secret values. This can happen due to the addition
of helper data, which might push the transformed verification sample outside the unit
interval. The entire verification is depicted in Figure 3.

2.5 Leakage analysis

We define leakage as mutual information between helper data and secret, hence

I(W ;S) = H(S)−H(S|W ) (14)

= −
1∑

n=0

P(S = n) log2 P(S = n)

+

q/2∫
−q/2

1∑
n=0

fW (w|S = n)P(S = n) log2

fW (w|S = n)

fW (w)
P(S = n) dw. (15)
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Figure 3: Verification of the fingerprints

In our experiment with a biometric database, of course, we do not encounter a prob-
ability density for the helper data, but wee see a set of discrete, measured values.
However, we might assume that the within-class distribution follows a Gaussian distri-
bution. Therefore we estimate fW by modeling it based on a mixture of N Gaussian
distributions, each having the mean value (µi)n and variance (σi)n that corresponds
to the measured average and spread in the within-class distribution for that particular
user. The density function for the samples is estimated as

fyn(yn) =
N∑
i=1

1√
2π(σi)2n

exp

(
−(y − (µi)n)2

2(σi)2n

)
(16)

The helper data density function can be derived from this function for both the
QIM and zero leakage quantization scheme, namely for the QIM scheme

fW (w, s)P(s) =
∞∑

j=−∞

fyn

(
w + q

(
s+ 2j +

1

2

))
for − q/2 ≤ w < q/2 (17)

While for the zero leakage quantization scheme we have to pay attention to the change
of variables by the distortion function, hence

fW (w, s)P(s) = fyn

(
g−1

(
w +

s

2
+

1

4

))
· d
dw

g−1
(
w +

s

2
+

1

4

)
(18)

= fyn

(
Φ−1

(
w +

s

2
+

1

4

))
·
√
π

2
exp

(
1

2
Φ−1

(
w +

s

2
+

1

4

)2
)
, (19)

in which Φ−1(x) =
√

2 erf−1(2x − 1), the inverse Gaussian cumulative distribution
function.

Finally, the unconditional density function can easily be derived by using

fW (w) = fW (w|S = 0)P(S = 0) + fW (w|S = 1)P(S = 1) (20)

3 Results

3.1 Preliminaries

We use the FVC2000 fingerprint database [9]. The database consists of 8 fingerprints
images from 110 subjects. From these fingerprint images we use the directional field
and Gabor response features as described in [5] and [3] respectively.
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Figure 4: Capacity and leakage results

During experiments we found many of the users to be badly enrolled, i.e. the
sampling grid was partly outside the filter responses output. This resulted in row and
columns entirely filled with zeros, which cannot be considered as a biometric feature.
Therefore we decided to reject all samples of a users that had at least one sample with
a row or column at either side filled entirely with zeros. This resulted in rejection of
almost half of the available users, so 59 users with 8 correct sampler remained.

To maintain a larger sample space, we first cropped the sample grids by 2 pix-
els, so a sample grid of 12 was left. This did not significantly influence classification
performance. However, the crop followed by rejection of users with at least one bad
enrollment, resulted in a better populated sample space with 82 users, each having 8
correct fingerprint samples.

Experiments were carried out with 6 enrollment and 2 verification samples, which
resulted in 28 possible splits, which were all used to assess classification performance.
This is a similar approach as in [4].

A small experiment showed that basing the PCA on all samples, instead of the
enrollment samples only, did not make a significant difference. Still we have used the
enrollment samples only to create the transformation matrix V .

3.2 Capacity

Figure 4(a) shows the cumulative verification capacity for an increasing number of
dimensions sorted by Eigenvalue. The method based on the diagonals (10) gives gives
the most optimistic estimate of capacity. Based on this result one could state that
under these circumstances one could achieve a capacity of approximately 27.5 bits
from 81 dimensions.

The results based on estimated error probability, C = 1−h(Pe), are however much
lower. Both binary and zero leakage quantification achieve a capacity just below 10
bits, approximately 9.5 and 9.9 bits respectively.

The QIM with helper data (QIM+HD) scheme cannot really be compared. Any
arbitrary value of capacity can be achieved by increasing the quantization width q, but
this comes at the cost of a high false acceptance and leakage, as can be seen in figure
5(a) and 4(b). The latter depicts the leakage results based on the estimation described
in section 2.5 versus the capacity based on the estimated error rate Pe. For our choice
of q = 2.5 we achieve a capacity of approximately 15 bits.
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Figure 5: Classification results for the various methods

3.3 Classification

Classification results are depicted in figure 5. Since we consider binary classification
schemes the extracted bit will either be equal or different in each dimension. Therefore
detection performance and false acceptance will depend on the number of errors the
that the system can handle by near exact matching (not privacy protecting) or by helper
data and an error correcting code (ECC). The false acceptance rate (FAR, dashed) and
false rejection rate (FRR, solid) for a decreasing number of tolerated errors is depicted
in 5(a). Based on the capacity results, the total number of features is set to 81.

False rejection for the methods with helper data is clearly lower, but this gain is
canceled out by the higher false acceptance. Especially the QIM method has a very
high false acceptance. However, both methods reach their equal error rate (EER) at a
lower number of tolerated errors, which makes the enrolled secret larger.

Combining both FAR and FRR as receiver operating curves, depicted in Figure
5(b), put the classification performance of the compared methods into perspective.
The binary classification and zero leakage scheme perform almost equally at 33 and 31
tolerated errors and an EER (dotted line) of 3.6% and 3.5% respectively. The QIM
scheme achieves an EER of 9.8% at 19 tolerated errors.

3.4 Leakage

Finally we will assess the leakage in both helper data schemes. The zero leakage
scheme should ideally not leak any information about the enrolled secret. However,
in a practical situation, where a system designer has to pick a pre-distortion prior to
having seen the actual population, there will be some leakage. This leakage is caused
by the mismatch between the pre-distortion function g and the actual distribution of
the features. An example for the first principal component is given in Figure 6(a), in
which the feature’s density estimation is based on the method presented in section 2.5.

The distortion mismatch causes the conditional density functions of the helper data
to be different, i.e. fW (w|S = 0) 6= fW (w|S = 1), which on its turn causes the leakage.
Figure 6(b) gives an example of the estimated conditional density functions of the
helper data. Although the conditional density functions for the zero leakage scheme
(ZL) are not equal, they is a smaller difference between them than between those of
the QIM scheme.

Figure 4(b) depicts the capacity and leakage per dimension. The sensible system
region is I(w; s)� C, so dimensions in the lower right corner are the most useful. We
see that QIM has seemingly higher capacity, but this is largely caused by the leaky
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helper data. As can be seen from this figure, the leakage of the zero leakage scheme is
in practice also not zero, but the features have a leakage of 0.08 bit on average. This is
much lower than the leakage of the QIM scheme, of which the average leakage is more
than 0.6 bit, which is a factor 7.5 higher.

4 Remarks

This first attempt to implement the zero leakage quantifier scheme proved to reduce
leakage, but it also showed that leakage did not become zero. The estimation of the
pre-distortion function strongly determines the performance and achieved reduction of
leakage. Therefore it is clear that simply assuming the features to be Gaussian did not
yield to most optimal results. We will continue searching for a better implementation
of the pre-distortion.

Also the unexpectedly large false acceptance rate for the zero leakage scheme could
most likely be explained by the mismatch between the applied pre-distortion function
and the actual distribution of the features. If one would compared this to theory, in
which we have assumed an i.i.d correlated biometrics model [2] with ρ = 0 for an
impostor and ρ ≈ .9 for a genuine user, not only FRR, but also FAR should be lower,
because an impostor is more likely to cause errors in the zero leakage scheme than in
a binary quantization scheme.

5 Conclusions

We have shown that the zero leakage scheme maintains leakage to be below 0.1 bit on
average, even if the distribution of participants to be enrolled has to be modelled in
advance. With this quantization scheme we achieved an EER ≈ 3.5%. Although the
binary quantization scheme can reach a similar EER, it is outperformed by both the
zero leakage and QIM scheme in a practical regime when only a few errors in a genuine
user verification can be tolerated. Moreover we have introduced a method to estimate
verification capacity of a biometric and a method to estimate leakage in a biometric
quantification scheme when only a limited number of biometric samples is available.
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