Theoretical Model for Maximum Throughput of a Radio Receiver with Limited Battery Power

J.H.C. van den Heuvel J.P.M.G. Linnartz P.G.M. Baltus



Technische Universiteit
Eindhoven
University of Technology

Where innovation starts

TU

# Receiving a signal consumes more power than transmitting it...

## Radio systems transmit over shorter and shorter distances

- 1904 Marconi: across the Atlantic
- AM radio (200 km: 2,000,000 watt)
- FM radio (50 km, 50,000 watt)
- 1980 Cellular radio (3km, 10 watt)
- 2000 WLAN (10 meters, 0.1 watt)
- 2010 Body area Network (1 meter, 0.01 watt)

Path loss is no longer a limitation to performance, radiated power is becoming very small

Power consumption in RX is due to

- Signal amplification, mixing, ADC, digital processing,
- Receivers needs to be in standby
- Increasing neighboring channel interference







Technische Universiteit Eindhoven University of Technology

PHILIPS / Electrical Engineering ICS-MSM

9-5-2010 PAGE 1

## Project Mimo for a mass market IOP Gencom

Scientific Innovations in -Handling interference in crowding bands

- Reducing power consumption by analog matrix operations









## Power trends in the wireless link Example for cell phones



#### Low power receiver design challenge



What is the best circuit power allocation in order to achieve the highest information throughput (bits) per Joule of energy <u>consumed in the receiver</u> ?





## Throughput per Joule that a receiver can achieve while consuming a certain circuit power



optimally distributed over various stages

Technische Universiteit

University of Technology

Eindhoven

le



## **Objectives**

#### Tradition design paradigm:

- Find the minimum power that achieves the required overall gain, IP3, noise factor
- Typical noise factors and good topologies are common knowledge in RF CMOS design
- Find out what the best gain & IP3 settings per stage are

#### Our new paradigm:

- Find the optimum throughput *T* per joule of consumed receiver power *Pr*
- In this optimum, the IP3 and gain setting are the best possible choice for that power *Pr*



#### Maximizing throughput by adjusting receiver IP3, F and G settings



## **Disclaimer for information theorists**

Our "Capacity" is not Shannon capacity

Our "Capacity" is determined by

- Interference which is out-of-channel, but which sets high linearity requirements
- Limited by known RF front-end design topologies

NB: The throughput may exceed capacity, if optimum signal processing is achieved to cancel out-of-channel interference.





#### Considering the individual stages of the receiver



## **Formal Solution for Minimizing Power**

#### Minimum Power Cascade Optimization

Jean-Paul Linnartz, 2010

$$P_{\min} = \min \sum_{m=1}^{M} P_m = \min_{\substack{G_1, \dots, G_M \\ IP3_1, \dots, IP3_M}} \left( \sum_{m=1}^{M} \frac{f_m}{\kappa_m} G_m IP3_m \right)$$



Derived by Jansen [Baltus, 2004]

Achieves the lowest-power implementation for a *given* required IP3<sub>tot</sub>,  $F_1$ , ...,  $F_M$  and  $G_{tot}$ 

9-5-2010

PAGE 10

## **Maximizing throughput**

#### Maximum Throughput Cascade Optimization:

Use MPCO to express  $F_{tot}$  and IP3<sub>tot</sub> as a function of power  $P_r$ :

$$\hat{T} = \max_{F_{tot}, IP3_{tot}} (T) \qquad \checkmark \qquad \hat{N}_{tot} = \min \left( N_{tot} \left( I \hat{P} 3_{tot} (F_{tot}) \right) \right)$$

Optimize  $F_{tot}$  and IP3<sub>tot</sub> such that total "noise"  $N_{tot}$  is minimum for a fixed Pr

PAGE 11

9-5-2010

$$\frac{dN_{tot}}{dF_{tot}} = 0 \quad \text{with} \quad IP3_{tot} = P_r \left(\sqrt{F_e} + \sqrt{\frac{F_w}{F_{tot} - F_1}}\right)^{-2}$$



## At the optimum throughput....

#### At the optimum throughput, the noise factors become



#### Throughput versus receiver power



Large  $P_r$ : the system is limited by  $E_b/N_0$ . Here, 9.4 bit/sec.

> Technische Universiteit **Eindhoven** University of Technology

> > PAGE 13

9-5-2010

TU

P

**PHILIPS** Jean-Paul Linnartz, 2010

#### **Results** Then, optimize *Pr,* such that *T/Pr* is maximized



## Optimum receiver battery power versus interference level



9-5-2010

PAGE 15

Prelectrical Engineering ICS-MSM Jean-Paul Linnartz, 2010

#### What bit rate gives the highest throughput ?

For large SNR, the best transmission strategy is 2.29 bit/s



PAGE 16

## Related work

#### TU/e:

• RF Design of critical elements in adaptive receivers: analog nulling of interferers

#### UCLA, UC Berkeley:

 Reducing power consumption in Mimo system by nulling interferers







### Conclusions

- For sensor networks, listening consumes more power than talking
- There are optimum strategies that minimize receiver circuit power.
- There is an optimum circuit power to be assigned to the receiver, given the amount of interference in neighboring channels
- For large SNR, the best transmission strategy is 2.29 bit/s
- Making the IP3 adaptive is still an IC design challenge



