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Abstract—An array of a large number of LEDs will be widely
used in future indoor illumination systems. In this paper, we inves-
tigate the problem of rendering uniform illumination by a regular
LED array on the ceiling of a room. We first present two general re-
sults on the scaling property of the basic illumination pattern, i.e.,
the light pattern of a single LED, and the setting of LED illumina-
tion levels, respectively. Thereafter, we propose to use the relative
mean squared error as the cost function to measure the uniformity
of the realized illumination pattern, and provide an analysis for
this cost function. Based on the analysis, the design of a basic illu-
mination pattern is discussed. The performances of a few basic illu-
mination patterns are compared, and an approach for optimizing
the basic illumination pattern through a weighted combination of
these basic patterns is also proposed. A weighted combination of
Gaussian and raised-cosine functions is found to yield the best re-
sults. Finally, three basic regular grid shapes for an LED array are
compared. The results show that 13% and 39% of LEDs can be
saved for the same degree of uniformity, using the hexagonal in-
stead of the rectangular and triangular grid, respectively.

Index Terms—Basic illumination pattern, LED illumination,
regular grid, two-dimensional signal processing.

I. INTRODUCTION

ECENTLY, the rapid development of solid-state lighting
R (SSL), especially high-brightness light-emitting diodes
(LEDs), has attracted much attention. The advantages of LEDs
include their high radiative efficiency, long lifetime, high tol-
erance to humidity, and limited heat generation [1], [2]. More-
over, the cost of LEDs, although still relatively high, decreases
quickly due to the rapid development of semiconductor devices.
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Because of these advantages, it is believed that LEDs will re-
place most of the conventional light sources in indoor illumina-
tion systems.

For the following reasons, it is beneficial to have a large
number of spatially distributed LEDs in an indoor environ-
ment. First, the state-of-the-art LED technology [3] still cannot
provide sufficient illumination by a single LED. Also, an
extremely high-brightness LED luminary compromises eye
safety. Moreover, spatially distributed LEDs can potentially
provide localized illumination effects. By combining a large
number of localized illumination effects, the LED based illu-
mination system can offer more flexibility than conventional
light sources, in rendering and changing the illuminance distri-
butions [4]. Localized illumination effects can also reduce the
light leakage into areas that do not need illumination so as to
maintain energy conservation and prevent glare.

LEDs can be, in principle, arbitrarily distributed, however it is
more convenient to have a regular array of LEDs on the ceiling,
for the purpose of uniform lighting as well as product manufac-
turing. In this paper, we thus focus on the case with an array of
LEDs in a regular grid which radiates light perpendicularly onto
the floor. The considered scenario is illustrated schematically in
Fig. 1. In an LED array, each single LED has a certain radiation
pattern, and when fully switched on, the LED produces an illu-
minance distribution on the ground, called the basic illumina-
tion pattern, denoted as fy(x,y; h), as also depicted schemat-
ically in Fig. 1. In this definition, the ground is viewed as an
(z,y) plane at a distance h from the ceiling. When the LED
is dimmed to some level, we also get a dimmed basic illumina-
tion pattern. The overall illuminance distribution due to multiple
LEDs is a superposition of such basic illumination patterns each
with potentially different illumination levels.

As introduced above, one of the important advantages of the
LED illumination system is the ability to provide a localized
illuminance distribution. The granularity of illumination ren-
dering is closely related to the beam width of LEDs. Thus it is
desirable to have as narrow a beam width as possible to achieve
a fine granularity. However, the most important and common
target illumination function in daily lives is still a uniform dis-
tribution around the room. Hence, in this paper, we discuss uni-
form illumination rendered by a regular array of LEDs with
beams of prescribed width. In practice, the distance between the
ground and the ceiling may not be known accurately. Moreover
in certain cases, the distance may not be fixed or it is required
to render a uniform illumination pattern at multiple distances
from the ceiling simultaneously. Hence, in this paper, we con-
sider uniform illumination rendering across a range of distances
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Fig. 1. A rectangular LED array applied for an indoor lighting system.

from the ceiling, or volumetric uniformity. In the literature, e.g.,
[4], [5], Moreno et al. worked on uniform illumination rendering
by a finite LED array, and showed that the uniformity achieved
changes with the distance from the ceiling and certain optimum
distance can be computed for a given LED setting. In this paper,
by comparison, we also investigate in detail the volumetric uni-
formity at every distance considered to show the evolution of
uniformity achieved as the distance changes.

Further, in the literature, there are previous studies on uniform
illumination rendering focusing on a finite number of LEDs
[4]-[10], for which case the edge effects are significant. In this
paper, by comparison, we do not consider the edge effects, be-
cause we are focusing on the center uniformity for the case when
the number of LEDs is very large, e.g., thousands of LEDs in a
room, and the area of a room is also very large, compared to the
grid size of the LED array. In this case, the edge effects due to
the limited number of LEDs are secondary. More specifically,
we consider the limiting case with infinite number of LEDs in
an infinitely large room.

For our scenario, we will first present two general results. The
first states the scaling property of the basic illumination pattern
fo(z,y; h). We will show that the beam width is expanded, as
the distance from the ceiling increases from £ to ho, linearly by
a ratio ho/h. Hence considering illumination rendering, e.g.,
uniform illumination rendering, at different distances from the
ceiling by the same LED array is equivalent to considering illu-
mination rendering at one distance by LED arrays with different
beam widths. The second general result claims that, for any
fv(z,y; h) and any grid shape for the LED array, the illumina-
tion pattern with maximum uniformity can be always achieved
by setting the intensity levels of all the LEDs to be identical, as
long as the cost function to measure uniformity is convex.

Given these two general results, in order to achieve an ap-
proximately uniform illumination effect, the remaining system
parameters to be optimized are the basic illumination pattern
fv(z,y; h) and the grid shape of the LED array.

For the basic illumination pattern of each LED, we first illus-
trate its effect through some examples. As discussed above, we
consider the illumination effects at different distances from the
ceiling. In practice, a widely used model for the radiation pat-
tern of LEDs is the generalized Lambertian function. In [11],
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Fig. 2. Tllumination pattern rendering at different distances from the ceiling,
h1 < hy < hs. The (z, y) coordinates denote the location of the illumination
pattern, and the z axis denotes the illuminance.

we show analytically that the basic illumination pattern due to
the generalized Lambertian function can be well approximated
by a Gaussian function defined mathematically in Section V-B.!
Hence, we first consider the Gaussian pattern in more detail. The
rendered illumination pattern due to the Gaussian (Gaus) pattern
by a rectangular array of LEDs is shown in the left column of
Fig. 2, for multiple distances from the ceiling. It can be seen
that the uniformity increases with the increase of the distance
from the ceiling. This is, however, not true for all patterns. We
present another example in the right column of Fig. 2, which is
named the raised-cosine (RC) pattern, defined mathematically
in Section V-C. The right column of Fig. 2 shows that the unifor-
mity does not increase monotonically as the distance increases.
From these examples, the design of fi,(x,y; h) appears to be
a key issue, and is considered in more detail in later sections.
We also propose an approach to optimize f,(x,y; h) through a
weighted combination of different known illumination patterns.

With respect to the grid shapes of the LED array, putting the
LEDs in different regular grid shapes results in different per-
formances in uniform illumination rendering. In this paper, we
compare three regular grid shapes and show that significantly
better uniformity can be achieved by using the hexagonal in-
stead of the rectangular or triangular grids.

The rest of this paper is organized as follows. The two general
results about the scaling property of f;,(x, y; h) and the setting of
illumination levels of the LEDs are presented in Sections II and
II1, respectively. Key properties of human visual perception and
the relative mean squared error (RMSE) function are introduced
in Section IV. We compare the performances of different basic
patterns and the linear combinations of some of these patterns in
Section V. The performances of uniform illumination rendered
by an LED array with triangular, rectangular, and hexagonal
grid shapes are compared in Section VI. Finally, Section VII
concludes this paper.

INote that the Gaussian pattern here is defined as a function of (. y; h).In
the literature, e.g., [8], [9], there is a different definition for the Gaussian pattern
as a function of the observation angle.
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Fig. 3. One dimensional illustration of the geometry for the illumination effect
at different distances  from the ceiling, where © denotes the solid angle.

II. SCALING PROPERTY OF THE BASIC ILLUMINATION PATTERN
AND ILLUMINATION RENDERING

For illumination rendering, each LED can be viewed as a
point light source and therefore the radiation pattern of each
LED can be viewed as a function of the solid angle f(©) in
the three-dimensional space. When f(©) is mapped onto a flat
surface at certain distance, denoted by h, from the ceiling, we
obtain the basic illumination pattern f;(z,y; h). More specifi-
cally, we have f(z,y;h) = (f(©)/x? + y* + h?) due to the
definition of the solid angle [12].

Considering the basic illumination patterns at two dif-
ferent distances h; and ho, as depicted in Fig. 3, we
obtain that fy(z1,y1;h1) = f(©)/(hF + 27 +yi)
and fy(w2,425h2) = f(©)/ (h3+ a3 +y3). Letting
Th 2 hz/hl = 3?2/.171 = yg/yl, we get f},(ﬂ?g,yg;hg) =
To(z1,y1;h1) /7, ie.

Jo(z,y;rinh) = ibe <£, ﬁﬂl) . (1)
T Th Th
It can be seen from (1) that the basic illumination pattern at 7 h
is identical to that at A with its beam width scaled by 7. Of
course the total light energy does not scale with &, as can be
obtained from (1)

|| twymiasay= [ [ pegisdy.

Moreover, the overall illumination pattern is a linear superposi-
tion of the basic illumination patterns from multiple LEDs. Let
fu(z,y; b, w) denote the overall illumination pattern at & imple-
mented by an LED array with the beam width of each LED to
be w, i.e.

f,,(x,y;h,w):Z%fb (Q7—xi7y__:l/i;h> )

w w

i

where (z;, y;) and v; represent the location and intensity level of
the ¢th LED, respectively, and 0 < v; < 1. Note that the specific
definition for beam width is irrelevant to (2), and discussions on
the definition of will be provided Section V-D. From (1) and (2),
we can obtain the following property.
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1) Property 1: Scaling property of illumination rendering

The illumination, denoted by f,(z,y;h,w), at distance h
from the ceiling, realized by an LED array with the beam width
of each LED to be w, satisfies

fy($7y;7'hh7w) = fy($7y;h,7"hUJ) (3)

i.e., the scaling of h and w are interchangeable when considering
illumination rendering by an LED array.

From Property 1, we will only consider illumination ren-
dering over a range of distances from the ceiling by an LED
array with fixed beam width in the rest of the paper. The
results obtained can be easily extended into the case when
the beam width of the LEDs can be also adjusted. Hence in
Sections III-VI, the parameter w will be dropped when writing
relevant functions.

III. OPTIMUM INTENSITY LEVEL SETTING FOR UNIFORM
ILLUMINATION RENDERING

In order to produce a uniform illumination pattern, we set
LEDs to some illumination levels, {v;}. We define an error
function, f.(x,y:h) = f,(x,y;h) — f, where f, is the target
uniform illumination pattern which is constant over the (z,y)
space. A cost function, denoted by £(f.), can thus be used to
measure the level of uniformity achieved. An optimum LED
intensity setting, {v; .}, is the setting such that £(f.) is min-
imized. A large category of possible cost functions, such as

g(fe) = maxm;y |fe($7y)| and g(fe) = fr fy f?(l‘,y)dl‘dy,

can be shown to be convex functions with respect to f., i.e.

flafer+ (1 —a)fe) S al(fer) + (1 —a)i(fe2) D

where f. 1 and f. o are two error functions due to different set-
ting {v;},and 0 < @ < 1.

For such commonly used convex cost functions, and due to
the shift-invariance of the rendered illumination pattern with re-
spect to a regular LED grid, we can obtain the optimum LED
intensity level setting as follows.

First consider an arbitrary setting of the LED intensity levels
and denote it as a vector v; = [vy, vy, .. .|, where (-)T denotes
the transpose operation. We can simply shift the LED illumina-
tion level settings by one LED with respect to the LED array,
e.g., the new illumination level of each LED equals the original
level of the LED next to it on the left.2 Let v, denote the new
LED intensity levels. It is clear that the illumination effect is
shift-invariant under the scenario considered in this paper, i.e.

E(felvr) = E(felv2). Q)

2As an example to illustrate this operation, we look at one infinite row of
LEDs with illumination levels to be

«..y V0, V1, V2,00, V1, V2. ..

corresponding to the LED locations. Now, we can compose another setting to
be

e V2, Vo, U1y Uy Vg, Vg v v s

while the locations of LEDs do not change. These two settings will give the
identical performance in terms of uniform illumination rendering. Note that we
give an example of repetitive setting for illustration, this is however not neces-
sary to prove Property 2.
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We then obtain the average of v1 and vo, i.e., Vaye = (v1 +
v2)/2. It is clear that the average illuminance rendered due to
v1, v and v,y are all the same. Furthermore, we have that

felvave = (felv1 + fe|v2)/2. Due to the convexity of the cost
function, we have
1
g(feh’ave) < 5 (f(fe|'”1> + f(fe|'”2)) = €<f8|'"1> (6)

where the last equality holds because of (5). Therefore, the level
of uniformity in the illumination effect achieved by any LED
illumination level, w1, is upper-bounded by that achieved by a
corresponding shifted-and-averaged level v,ye.

The above shift-and-average operation can be further ex-
tended to arbitrary number of shifts, denoted by Ngpie, with
respect to the LED array, i.e., Dave = (1/Nghift) Zf\;‘l‘“ v;.
When Ngpiee gets large, v,ve asymptotically becomes the vector
where all the elements are identical, i.e., a uniform setting of
intensity levels. Further, if v; is a uniform illumination setting,
Vave 1 equal to w1, and thus the cost function can not be
further minimized by this shift-and-average operation. Hence
we obtain the following property.

1) Property 2: 1f the cost function to measure the uniformity
in terms of illumination rendering, £( fe ), is convex with respect
to f., and due to the shift-invariance property of a rendered il-
lumination pattern, the optimum uniformity can be achieved by
setting the LED intensity levels to be identical.

Note that if the given convex cost functions are mini-
mized by the setting v,y., any monotonic function of such
convex functions will be also minimized, such as &(f.) =

log max, | fo(z,y)| and £(£.) = \/ I, J, £2(w,y)dzdy.

Finally, note that the general result presented above in this
section is focused on the case without considering the edge ef-
fects, as discussed in the Section I. If the number of LEDs is
small, the edge effects can be quite visible, thus different inten-
sity level setting can be used. For instance, a viable option is to
set the intensity levels at the edge of the LED array differently
from that in the center of the LED array [4], [5].

IV. HUMAN PERCEPTION AND COST FUNCTION

As aforementioned, some cost function needs to be used to
measure the uniformity achieved in terms of illumination ren-
dering. In this section, we discuss a few properties of human
perception and propose a convex cost function based on RMSE.
Similar MSE based cost functions were also used in [7], [9].

A. Human Perception

When looking at an illuminated target location, the human
visual system treats it as a light source and the exact measure-
ment of the light intensity perceived, called luminance, is the
amount of light reflected from the location per unit area in the
direction of the eyes. This measurement is dependent on many
factors, e.g., the type of the reflecting surface and the position
of the eyes. Therefore a widely used criterion for designing il-
lumination effects is the measurement of the illumination inten-
sity incident on the target location, also called illuminance [13],
measured in lumen/m?.

The human visual system in principle can process a very
wide range of illuminance, however not all at the same time.
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It continuously adapts itself according to the background or
environmental lighting conditions. In general, the human visual
system is more sensitive to the light in a dark background than
in a bright background. For uniform illumination rendering,
the target illumination effect is a uniform background lighting.
Therefore, the “visibility” of an illumination distortion or illu-
mination pattern at the target location can be characterized by
the contrastratio C' = f.(x,y; h)/ fi [13]. This characterization
is also consistent with the Weber’s law for human perception
[13]. Further, there is in practice a threshold for C, denoted by
C'n, below which f.(x,y; h) is not visible.

B. Cost Function

In this section, we propose a MSE based cost function for
analytical tractability, taking human perception properties into
consideration. More specifically, we propose RMSE as the cost
function, i.e.

1 fE(z,y;h)
I3 = —/ == ~d(xz,y;h) (7
RMSE \/HAH e 72 ( )

where A is the region of the illumination pattern considered. To
investigate uniform illumination in an infinite space by a regular
LED array, we later show that we only need to compute the
RMSE in one or a few, depending on the LED grid shapes, unit
areas corresponding to an LED grid. The RMSE is normally
shown in dB scale, i.e.

¢rmse(dB) = 101og; o érvsE. (8

Next, we give a quantitative example of the range of MSEs
that is perceivable based on the threshold properties introduced
in Section IV-A. Assume by way of illustration that there is a
two-dimensional raised-cosine illumination pattern, the exact
definition of which is shown in Section V-C, on a uniform
lighting background at the distance A from the ceiling, and that
the contrast ratio between the illuminance of the raised-cosine
illumination pattern and that of the background is exactly C},.
More precisely, assume that

et = (

where s, denotes the distance between neighboring LEDs on
the ceiling. For this case, A in (7) is the region where —s,/2 <
x,y < $,/2. This example is used since it represents the key
spatial frequency component in the distortion for uniform illu-
mination rendering by a square array of LEDs with grid size s,,
as illustrated in Fig. 1. By comparing (7) and (9), we obtain that
Ermse = (3/2)Ciy. From [13], it is shown that Cl), may vary
from 0.01 to 100 depending on many factors, such as the back-
ground illumination level, i.e., f; in this paper, and direction
of the observer. For instance, C}y, is larger when f; is higher.
Hence, the perceivable éryise for an observer can range from
—18to0 22 dB in practice. Hence, RMSE values well outside this
range are of no interest to this paper.

Given the definition of the RMSE cost function, we are ready
to evaluate the performance of uniform illumination rendering
across a range of distances from the ceiling. Based on the evalu-
ation, we can also optimize system parameters to achieve more

2 2
1+ cos —7rx> (1 + cos —Wy> O]

o o
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uniform illumination patterns. From Property 1 and Property 2,
it is clear that, in order to achieve uniform illumination, the re-
maining system parameters to be optimized are the basic illumi-
nation pattern f;(x,y; h) and the grid shape of the LED array,
which will be discussed in Sections V and VI, respectively.

V. DESIGN OF BASIC ILLUMINATION PATTERN

In this section, we investigate the uniformity in the illumi-
nation effect achieved by the uniform LED illumination level
setting for a rectangular array of LEDs, in order to compare
and design basic illumination patterns f;(z,y; h). In this case,
the (z;,y;) locations of the LEDs can be written as (Is,,ns,),
where both [ and 7 are integers. Without loss of generality, we
first consider the square grid, i.e., s, = s, = 5,,in Section V-A.
Further reason about why the square grid is of particular interest
is discussed in Section VI. Extensions of the results obtained for
the square grid into general rectangular grid is trivial and thus
not shown in this paper. Further extension of the results obtained
for the rectangular grid to other regular grid shapes will also be
presented in Section VI.

A. Evaluation of RMSE
First, we derive the exact expression of RMSE when the LED
intensity levels are set to be identical according to Property 2.
Let v, denote the illumination levels of the LEDs, where v, is
a constant according to Property 2. The target illumination effect
ft is also the mean value of the illuminance on a flat surface at
distance h that can be evaluated as follows:

sof2 s/2

/ / Z Z Ve fo(x =180, y—nso; h)dzdy

—50/2—5,/2 l=—oon=-00

(14+(1/2))50 (n+(1/2))s0
v(‘fb(x? Y3 h)dl’dy
(1—(1/2))s0 (n—(1/2))s0

/ Jo(z,y; h)dzdy

P
=t (10)

SO
where P, is the total flux of an LED, ie., P, =

JZ5 25 folw,y; h)dady. Intuitively, (10) can be explained
as follows Due to the symmetry of the LED array and the
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to each s, x s, area around the (z,y) location of an LED is
identical. The total power shed on the surface from each LED
is v. P,. Hence, the mean value of illuminance is given by

f lim N’UCPb _ ?}ch
+ =

N—oo Ns2 s2

Y

We can thus further evaluate the performance of rendering such
a uniform illumination pattern through considering the RMSE
cost function defined in (7), yielding (12), as shown at the
bottom of the page. In (12), Fy,(u, v; h) is the Fourier transform
of fp(z,y;h), known as

EFy(u,v;h) = / / fo(z,y; h)

x exp (—27j(uz + vy)) dady. (13)

A detailed derivation of (12) is shown in Appendix I. Effectively,
&rMsk is obtained through sampling Fj, and the summation of
all the samples except the DC component.

Until now, we only discussed the light shed on the surface
directly from LEDs. Light may also propagate through one or
more diffuse reflections and eventually arrive at some location.
Due to the nature of diffuse reflections, the light from diffuse
reflections is approximately uniformly distributed [14]. There
may exist other light sources, e.g., fluorescent lamps, in an in-
door environment, the illuminance due to which can be also
viewed as uniformly distributed. In the presence of uniform
background light, the absolute MSE in terms of rendering uni-
form illumination does not change. The effect on the RMSE can
be fully accounted for by incorporating the power from diffuse
reflections and background light into f;, and modifying it into
fi = 7 f:. Therefore, we get épmsr(h) = (1/79)Ermsr(h). The
ratio -y is close to one when there is no strong background light.
As a numerical example, for the ceiling and floor with 50% re-
flectivity, v is about 1.33, when considering infinite number of
reflections. In this case, {pvse is only 1.24 dB lower due to
the reflected light. We will also later see that this v does not
influence the main conclusions of this paper. In the rest of this
paper, we focus on the case without strong background light,
and, hence, v is neglected.

From (12), égmsk(h) remains a function of h, and (12) in
fact presents a convenient approach to compute {gnvsg(h) nu-
merically, in comparison to the original two-dimensional inte-
gral which is quite complicated to compute. Furthermore, from
(1), we can obtain that

uniform illumination level setting, the optical power shed on EFy(u,v;rph) = Fy(rpu, rpo; h). (14)
1/2
11 50/2 50/2 s s 2
Ervse(h —2—2 Z Z Vefo(z — S0,y — nSo; h) — fi | daxdy
o 50/2 0/2 l=—oco n=—00
2
1 1 1
_ L mo_m_m> (12)
b So So

{L,n > +n20}
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Hence from (12), we get

Ervse(Thh)

_ 1 3

{I,nli2+n2-£0}

2

1 1
Fy (l—7n—;rhh>
So 8o

2
Th T

E (1=, n=h
So So

This expression shows that, as the distance h changes to 7h,
¢rMse can be simply obtained by changing the sampling rate
of Fy(u,v; h) from 1/s, into 1, /s,. Thus, (15) further gives a
low-complexity approach to evaluate égyisg across a range of
distances from the ceiling.

Now, it is shown that {gnmsg is determined by the function
Fy(u,v; h) or fi(z,y; k). Further, from (15), we are ready to
design f(x,y; h) in order to achieve minimal {g\sg. Before
that, we first compare the performances of a few known func-
tions as fp(x,y; h).

15)

{1,nli2 2 £0}

B. Performance of a Gaussian Basic Illumination Pattern

In practice, a widely used model for the radiation pattern of
LEDs is the generalized Lambertian function. In [11], we show
that fi(z, y; h) in this case can be well approximated by a two-
dimensional Gaussian function f,(z,y; h), i.e.

Ch eXP{—$2+y2}
' 2
h 20},

folz,ysh) = (16)

2mo?

where o7 is the variance and cj, is a normalization factor.

The Fourier transform of f,(x,y;h) can be obtained as
Fy(u,v;h) = cpexp (27207 (u* + v?)).
The RMSE function in (12) can be derived as follows:

2

1 1 1
, =— Fy(1= n—;
Ermse(h) 7, Y (lso,nso ; h>
{l,n|l2+n2#0}
2
ch 4ol
=5 (193 (0,exp (— = —1 a7

where ¥3(+, -) is the Jacobi theta function of type three. Numer-
ical results for {gvisg(h) are given in Fig. 7.

From (15) and the following Lemma 1, it can be seen that
¢rmsk(h) is monotonically decreasing as h increases, as was
illustrated in Fig. 2.

Lemma 1: A sufficient condition for {rysg to be monotoni-
cally decreasing as h increases is that | Fy(u, v)|? is also mono-
tonically decreasing as |u| or |v| increases.
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Proof: From (15), we have (18), as shown at the

bottom of the page. Since O (|Fy(u,v;h)|?)/0u < 0
when w > 0 and 9 (|Fy(u,v;h)|?) /Ou > 0 when
u < 0, and since the same property applies to the
partial ~derivative of |Fy(u,v;h)[> by v, we have

d(ERnse(rnh))/d(rn) < 0. Because d(&gysp(rnh))/
d(rp) = 26rvse(rah)d(Ermse(rah))/d(rs),  and
fRMSE(Thh) Z 0, we have d(ERMSE(""hh))/d(Th) S 0. |

From Lemma 1, we can identify many other functions
fv(z,y; h) as basic illumination patterns, for which éryse(h)
keeps decreasing as h increases. This is a useful property
in the sense that we only need to design the LED patterns
to satisfy some requirement on {gvse(h) at a certain target
distance hy and do not need to pay attention to {rysg at a
larger distance. Examples of such functions include the linear
roll-off function, fy(x,y) = c1(1 — co|z])(1 — e3lyl), the
two-dimensional Gaussian function, the exponential function
fo(z,y) = c1 exp(—ca|z| — ¢3|y|), and the Lorenzian function
fo(z,y) o [(2 +a?) (3 +y?)]*, where c1, ¢z and c3 are
constants.

Although the Gaussian basic pattern and some other patterns
introduced by now have the appealing property that the resulting
&rmse(h) is monotonic, perfect uniformity, i.e., épvse(h) =
0, can never be achieved at any distance h. In Section V-C, by
comparison, we are going to present a family of basic illumina-
tion patterns that will make rysg(h) = 0 at certain distances.

C. Performances of the Family of Raised-Cosine Patterns

From (12), érmsg = 0 at certain hg, if and only if
Fy(1/$0,m/80; ho) is nonzero when n = 0 and [ = 0, and zero
otherwise. Further, after working out the scaling parameters,
we have an extension of the well known Nyquist pulse shaping
criterion [15].

Lemma 2: Extended Nyquist Pulse Shaping Criterion:

The necessary and sufficient condition for

oo

Z Z fb(a: - lsmy - nso§h0) =1, v (:Ey) (19)

|=—o00 n=—00
is

F, <li,ni;h0) = s26(1,n) (20)

So  So
where 6(-) is the Kronecker delta function. Lemma 2 defines
an entire class of functions fy(x,y;h), through which we
can achieve perfect uniformity at hg. Of particular interest in
this paper, we consider the family of separable raised-cosine
functions due to two reasons. One is that it is limited in the
spatial domain. The other is that this family of functions

dfl%MSE(rhh)
d’l‘h

1
,)2 ou

{l,n|I2+n2#£0} (

O|Fy(u,v; h)|?

u=Il(ry/so)

a +8|F;,(u,v; h)|?

90 (18)

n
So v=n(ry/so) So
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includes shapes with different steepness corresponding to
different roll-off factor (3. The raised-cosine function at hg can
be written as

fo(z,y5 ho) =rcos(z; B)rcos(y; 3) 1)
Fy(u, v; hg) =Freos(u; B)Freos(v; ) (22)
where
rcos(x; 3)
17 |£I?| S %8”
= %_}_%cos(ﬁ (|x|—%so)> ) #so <|z| < #so
0, elsewhere
(23)
and its Fourier transform
Frcos(u; 8) = sosinc(wuso)%. (24)

Note that the expressions for the raised-cosine pattern, (21)
to (24), at hg do not depend on the value of hgy, while only
depend on s,. A practical example for such raised-cosine pattern
can be hg = 2 m while s, = 0.1 m, for an LED array with
narrow beams. The general expression at any A for fi,(z,y; h)
and Fy(u, v; rph) can be obtained through (1) and (14).

For this particular family of basic patterns, perfect uniformity
is achieved at h,. At this distance, the —3 dB beam width is
$0/2, i.e., the value of f,(z,y;h) decreases to half of its max-
imum at the middle of two neighboring LEDs. More discussions
on beam width definitions are presented in Section V-D. The
illumination pattern rendered at another distance h can be ex-
pressed as a function of h/h,.

For h/h, smaller than or greater than one, {rvse(h) be-
comes nonzero. When h/h, decreases below one, éryvsg(h)
keeps increasing. On the contrary, as h/h, increases above one,
Ermse Will be reduced again. After many fluctuations, {gnvise
approaches zero as h/h, goes to infinity. Further for the class
of raised-cosine functions, we focus on the case when h, cor-
responds to the first null of Fy(u,v;h) to provide the lowest
possible beam width, and thus the minimum illumination gran-
ularity can be achieved.

Fig. 4 illustrates the trend of {ryvse(h) as b changes, for
raised-cosine functions with different roll-off factors, denoted
by 3. Note that it is in general difficult to obtain closed-form ex-
pressions for (15), however, for the functions we are interested
in this paper, e.g., raised-cosine functions, the dominant factors
in (15) are only the first few terms. It may be shown through nu-
merical computations that (15) almost converges as [ and n are
summed until 20.

It can be seen from Fig. 4 that, although a raised-cosine func-
tion fj, with any roll-off factor J results in perfect uniformity at
ho, érvsE at other distances can be quite different at different
(. In general, {épvsk is lower at a higher 3. More specifically,
we compare the worst case ER\SE, 1-€., the largest Eryvisg, in the
range h > h, and depict the results in Fig. 5. It is seen that the
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Fig. 5. Worst case égmsg versus roll-off factor 3.

raised-cosine function with § = 1 outperforms all other func-
tions with smaller 3. Hence in the rest of this paper, we only
focus on the case with § = 1.

In this section, we discussed the optimum f; according
to the extended Nyquist pulse shaping criterion. The ap-
plicability of such non-Gaussian basic patterns is due to
the assumption that we are allowed to implement such f;
through designing the optical component attached to the LEDs.
Some practical constraints on f; considered in this paper
include f, > 0, fp is symmetrical, i.e., fy(—z,y) = fi(z,y)
and fy(z,—y) = fo(z,y), or rotationally symmetrical, i.e.,
folw,y) = fulw cos p—y sin g, y cos p-+asin ¢), ¥ ¢ € [0, 2],
in the spatial domain for convenience in manufacturing. More-
over, f; is monotonically decreasing from the center of the
beam.

D. Comparison of Basic Patterns fi,

In this section, we compare different basic illumination pat-
terns based on their performances in uniform illumination ren-
dering across a range of distances. To compare the performance
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Fig. 6. Illustration of a few basic illumination patterns with the same beam width for two different criteria.

of the proposed basic patterns, we consider the tradeoff between
rendering of uniform illumination patterns and the granularity
in rendering of localized illumination patterns. For the perfor-
mance of rendering uniform illumination patterns, we focus on
the range of distances which are larger than a target distance
ho. To make a fair comparison in terms of rendering of local-
ized illumination patterns, we consider all the basic illumina-
tion patterns with the same beam width. We provide two cri-
teria for the definition of beam width. In the first criterion, the
beam width is defined as the distance between the LED location
and the position along the LED grid where f;, is reduced to half
of its maximum value. Therefore, this criterion focuses on the
central part of a beam and is named center fitting criterion. The
other criterion focuses on the perceivable edge size of f,, and
the beam width is defined as the distance between the LED lo-
cation and the position along the LED grid where f; is reduced
by 20 dB (see Section IV-B). Hence this criterion is named edge
fitting criterion. These two criteria represent two distinct cases
of beam width definition. Results for other criteria can be ob-
tained similarly.

As discussed in Section V-C, we only need to consider the
case with roll-off factor # = 1 in the family of raised-cosine
(RC) functions. We also consider a few other functions. The
one-dimensional illustrations of these functions are shown in
Fig. 6(a) and (b), for the center fitting criterion and edge fit-
ting criterion, respectively. The z-coordinate is normalized by
So. This normalization is taken because the level of uniformity
achieved is mostly dependent on how much overlap exists be-
tween the light beams of neighboring LEDs. Hence a mean-
ingful definition of beam width should be in terms of s,. From
Fig. 6, there is no visible difference between the Gaussian pat-
tern and the Lambertian pattern for the case when h = 2 m, and
s, = 0.1 m, which represents a normal indoor situation. There-
fore, we will only consider the Gaussian pattern in the rest of
the paper. The reason why this difference is dependent on h and
S, 18 because, as will be shown in [11], the difference depends
quite strongly on the Lambertian mode number, which in turn

depends on the beam width at k. The beam width is, as discussed
above, normalized in terms of s,. The curve corresponding to
the weighted combination of Gaussian (Gaus) and raised cosine
(RC) functions is explained later in Section V-E.

The RMSE in rendering uniform illumination by these basic
patterns is depicted and compared in Fig. 7(a) and (b), for the
center fitting criterion and the edge fitting criterion, respectively.

It can be seen that the RMSE for the raised-cosine and linear
roll-off functions fluctuates when h/h, increases above one, al-
though perfect uniformity can be achieved at h,,. In contrast, the
RMSE for the exponential, Gaussian and Lorenzian functions
keeps decreasing while h/h,, increases above one, although per-
fect uniformity can not be achieved. Therefore we propose to
use the worst case RMSE in the range of h/h, > 1 in order
to make a fair comparison of all the functions. The worst case
RMSE corresponds to the most observable error. From Fig. 7,
two interesting basic patterns are the Gaussian pattern and the
RC pattern. Both yield low RMSE, and appear to be similar in
the spatial distribution. This motivates us to further explore the
possibility of linearly combining these two and other patterns.

E. Optimization of fi, Through Linear Combination

In Section V-D, we compared a few known functions as basic
illumination patterns. To further optimize f;, we propose to in-
troduce more basic patterns through linear combination of some
of the known functions, i.e.

fb = Zaifbi

where { f3;} are the presented basic patterns, «; > 0 for each
i and ), o; = 1 such that the beam widths of different pat-
terns are all identical. The linear combination of different basic
patterns can yield a tradeoff between the advantages and dis-
advantages of different patterns. Moreover, as an example, the
Fourier transform of the Gaussian function or exponential func-
tion is always positive while that of the raised cosine functions

(25)
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Fig. 7. RMSE in rendering uniform illumination by a regular LED array for different basic patterns with the same beam width based on two different criteria.
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Fig. 8. Worst case RMSE in rendering uniform illumination by linear combinations of different basic patterns with identical beam widths.

may be positive or negative. Therefore, the linear combination
of Gaussian and raised-cosine, or exponential and raised-cosine
can perform even better due to possible cancelations.

The performances of different combinations, in terms of
worse case RMSE for h/h, > 1, are shown in Fig. 8(a) and (b),
for the center fitting criterion and the edge fitting criterion,
respectively. It shows that the performance of a linear com-
bination of the raised-cosine and some other functions, such
as the Gaussian, exponential and Lorentzian functions, can
potentially be better than either of the original ones. Fur-
thermore, for the center fitting criterion, it can be seen from
Fig. 8(a) that the linear combination of the raised-cosine
and Gaussian functions when «; = 0.6, where «q is the
combination coefficient corresponding to the raised-cosine
function, gives the best performance, which is more than 3 dB
better than that given by either the Gaussian or raised-cosine
pattern. The beam shape of this linear combination is also

depicted in Fig. 6(a). We can observe that this function is very
close to the raised-cosine function, except that its tails are
heavier due to the Gaussian component. Similarly, for edge
fitting criterion, Fig. 8(b) shows that the linear combination
of raised-cosine and three other functions considered provide
similar performances, and all perform best when oy = 0.8.
The best performance achieved is roughly 10 and 2 dB better
than that given by the Gaussian and raised-cosine basic pattern,
respectively.

It is illustrated in Fig. 6 that the Gaussian pattern is a very
good two-dimensional approximation of the generalized Lam-
bertian pattern of LEDs. In this section, we showed that the sig-
nificantly better performance of uniform illumination rendering
than that by the Gaussian basic pattern can be achieved by the
proposed optimization approach. Moreover, the lowest RMSE
obtained through this optimization is hardly perceivable, refer-
ring to Section IV-B.
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F. Additional Discussions on Beam Widths and Beam Shapes

In the above discussions, we compared a few basic patterns
with identical beam widths. In particular, we chose the beam
width to be 0.5s, for the center fitting criterion and 0.95s,, for
the edge fitting criterion, because these two beam widths corre-
spond to the same raised-cosine pattern for which perfect unifor-
mity is achieved at h, with minimum illumination granularity.
For different scenarios, other values for beam widths can be
chosen in order to compare different patterns. It turns out that
there is a tradeoff between uniform illumination rendering and
illumination granularity.

For the Gaussian basic pattern, increasing beam width, which
is equivalent to increasing h/h, due to Property 1, in Fig. 7(a),
results in lower RMSE at the cost of larger illumination gran-
ularity. When the beam width for the center fitting criterion
is increased to 0.6s,, the RMSE is no longer perceivable.
For the raised-cosine pattern and the weighted combination
of the Gaussian and raised-cosine pattern, on the other hand,
increasing the beam width from s, to 0.6s, does not result
in any change in the worst case RMSE, while the rendered
illumination granularity is increased. Similar observations for
other basic patterns and for the edge fitting criterion can also
be drawn from Fig. 7.

In this section, we discussed the performance of different
basic patterns to provide guidelines for the design of LED
illumination modules. In practice, these patterns can be imple-
mented or approximated through collimating optics [16], [17].
For instance, due to the rapid development of solid state lighting
technologies, there appears great variety of basic illumination
patterns [7], [8]. Therefore, it would be easy to implement the
basic illumination patterns proposed in this paper, however
discussions on the details of such optics are beyond the scope
of this paper. Furthermore, the collimating optics are located
near the LEDs, and at the far field, the combined effect from
the LEDs and the optics can be still treated as that from a
point source. Therefore, all the results presented above, e.g.,
the scaling property, are still valid in the presence of such
collimating optics.

Further, we only consider the lighting system with a larger
number of LEDs in this paper. When the number of LEDs
is small, especially when the edge effects play a significant
role, we might have certain different observations, e.g., the
monotonic behavior for the uniformity achieved through the
Gaussian basic pattern may not hold, [5]. Nevertheless, as
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Fig. 9. Triangular, square, and hexagonal grid shapes.

shown in Section I, for the application scenario considered in
this paper, the edge effects are negligible, hence we will not
provide further discussions on the edge effects in this paper.

Moreover, given the regular LED array considered for the
convenience of mass production, we do not consider significant
differences among the LEDs in terms of peak intensity, color
and angular distribution, etc., which can be solved by binning
operations [18] during production, in a future lighting system.

Finally, we focus on an analytical approach, instead of
another widely used approach of Monte Carlo simulation,
when evaluating the performance of illumination rendering in
this paper. This is because we consider uniform illumination
rendering by an infinite LED array to neglect the edge effects.
In this case, the Monte Carlo method is not applicable. Further,
the analytical approach allows an efficient evaluation of the
performances achieved at different distances (see (15)), which
can not be as efficiently accomplished by the Monte Carlo
method.

VI. COMPARISON OF TRIANGULAR, SQUARE AND
HEXAGONAL GRID SHAPES

In previous sections, we presented a framework for evaluating
the performance of illumination rendering by a square (rectan-
gular) array of LEDs. In this section, we extend the framework
to other regular LED grid shapes and compare their results with
that of the rectangular grid shape. For uniform illumination ren-
dering, it is desirable to have a regular LED grid shape with rota-
tional symmetry. It is well known that we only need to consider
three such basic grid shapes. We show this result in Lemma 3
and a simple proof is presented in Appendix II.

Lemma 3: For a two-dimensional regular grid which covers
the entire space, if it is symmetric under rotations over an angle
1, where 0 < 1 < m, then the regular grid must be either
triangular, square or hexagonal.3

3The grid shapes, as illustrated in Fig. 9, are named according to the reciprocal
shapes of the LED lattice.

(1/2)
2
1 ,
§RMSE-TRI = - Fy (lgr—’,n\/zh > (1+ (—1)l+n)\/2 + 2cos ((l + g) 7r) (26)
b (|12 $n2£0} Sol 3801
¢ _ L (1 (1 + (=1)tn) : 27
RMSE-HEX = 7> s T

{Lnfi24n2£0}
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Fig. 11. RMSE versus relative densities of triangular and square LED arrays with respect to that of hexagonal array.

Fig. 9 depicts the three grid shapes, where the minimum dis-
tances between two LEDs are denoted as s,1, S,2, and S,3, re-
spectively. In this section, the performances of the three grid
shapes are discussed and compared. To make a fair comparison,
we assume the LED densities and the basic illumination pat-
terns are the same for the three grid shapes. The area of each
basic component grid can be obtained as |4 || = (3v/3/4) s2,,
| A2|| = s2,, and || As]| = (V/3/2) s2,, respectively, and hence
So1 = (4/(3\/5)) S0y = (2/3)s%3.

From Fig. 9, the LED array with triangular and hexagonal
grids can be seen as consisting of four and two LED arrays with
rectangular grids, respectively. Hence, the RMSEs for these two
grids can be obtained similarly as was done in the previous
sections. More specifically, we compute the RMSE in the unit
region of any of the component rectangular grid for the sake
of convenience and the results are equivalent, because the unit
rectangular region consists of multiple unit hexagonal or tri-
angular grids. Eventually, we get that the RMSE for the trian-
gular and hexagonal grid are shown in (26)—(27) at the bottom
of the previous page. We only consider two basic illumination

patterns, i.e., the Gaussian pattern and the linear combination
of the Gaussian and raised-cosine pattern (see Section V-E), in
order to compare the RMSE for the three grid shapes. These
two basic patterns correspond to the spontaneous LED illumina-
tion pattern and the best basic pattern we have obtained for the
square grid respectively. The RMSE for different grid shapes
is depicted in Fig. 10(a) and (b) for the center and edge fitting
criterion, respectively. In Fig. 10(a), when the basic illumina-
tion pattern is Gaussian, the RMSE for the hexagonal grid is
roughly 2 dB lower than that for the square grid, which in turn
is roughly 3 dB lower than that for the triangular grid. The linear
combination of the Gaussian and raised-cosine is applied with
a1 = 0.6 and a; = 0.8 for the center fitting criterion and edge
fitting criterion, respectively. For this basic illumination pattern,
the same order of performance, in terms of worst case RMSE,
still holds. This order of performances is reasonable in the sense
that the number of neighboring LEDs with the smallest distance
varies from three to four and five, when the grid varies from
triangular into square and hexagonal. Similar observations can
also be made from Fig. 10(b).
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This means that a more uniform illumination effect can be
achieved by arranging the same number of LEDs in the hexag-
onal rather than in the square or the triangular grid. In other
words, if we only need to obtain a desired level of uniformity,
we can decrease the number of LEDs to reduce the cost, or re-
duce the beam width of the LEDs to provide better granularity
in rendering other patterns.

To further quantify the advantage of the hexagonal grid, we
can also compare the LED densities at the same RMSE per-
formance. The performance of uniform pattern rendered by a
square and a triangular LED array as the LED density increases,
is shown in Fig. 11(a), where the beam width of the Gaussian
pattern is equal to the raised-cosine pattern in terms of the center
fitting criterion. As a reference, the RMSE rendered by a hexag-
onal LED array at height h, is also shown in Fig. 11(a). It is
shown that (1.15—1)/1.15 = 13% and (1.65—1)/1.65 = 39%
LEDs can be saved if we use a hexagonal grid instead of a square
and triangular grid to achieve the same performance in terms of
RMSE. For the Gaussian pattern whose beam width is equal to
the raised-cosine pattern in terms of the edge fitting criterion,
similar conclusions can be drawn from Fig. 11(b), except that
13% and 27% LEDs can be saved in this case, if the hexagonal
grid is used instead of the square and triangular grid, respec-
tively. Note that similar insights can also be obtained for finite
number of LEDs in [5], and for the sampling and reconstruction
of 2-D signals in [19], [20]. This fact illustrates that the results
and insights obtained in this paper can be also widely applied to
other different practical scenarios.

VII. CONCLUSION

In this paper, a mathematical framework is presented to
investigate illumination rendering by an array of LEDs, and
guidelines are provided to design an LED illumination system.
We focus on uniform illumination rendering by LEDs with
narrow beams and analyze performance in terms of the pro-
posed cost function, the RMSE. We proved that maximum
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uniformity in illumination rendering can be achieved by setting
the intensity levels of all the LEDs to be identical. We also
presented the scaling rule of the basic illumination pattern with
respect to the distance from the ceiling and thus proposed a
convenient approach to evaluate the performance of uniform
illumination rendering across a range of distances. This scaling
property is also potentially useful for practical engineers when
designing other nonuniform patterns. Through the design of
the basic illumination pattern of a single LED, we conclude
that significantly better performance can be achieved, using the
proposed weighted combination of Gaussian and the raised-co-
sine function instead of the conventional Lambertian function.
The residual rendering error achieved due to this proposed
basic pattern is hardly perceivable. Note that the patterns
discussed and proposed in this paper can be implemented or
approximated through collimating optics. Moreover, through
comparing three different LED grid shapes, namely the tri-
angular, square and hexagonal grids, we not only confirm the
intuition that hexagonal grid shape is better, but also conclude
numerically that better uniform illumination pattern, 2 and 5 dB
in terms of RMSE, can be achieved by using hexagonal, instead
of square or triangular grid. Alternatively, 13% and 39% LEDs
can be saved if hexagonal grid is used instead of square and
triangular, respectively, while achieving identical granularity
in localized illumination rendering and identical performance
in uniform illumination rendering. A potential direction for
further study would be to investigate localized illumination
rendering through an array of LEDs.

APPENDIX I
DEDUCTION OF (12)

In this appendix, we give a detailed deduction for (12). See
(28)—(31) at the bottom of the page, where (30) and (31) follow
from the first and last equation of (10), respectively.

Now, consider the fact that the sequence
{Fy (I(1/s0),n(1/s0); )}, where | and n are integers,
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e’} [eS) 2

Z Z ngb(fﬂ - lsoay_n30§h) dil?dy

. :

Z Z fo(x = lso,y —nso;h) | dady (32)

and Y0 S S2fi(w — s,y nse;h) where
—$0/2 < x,y < 8,/2 consist of a two-dimensional Fourier
pair in terms of discrete-time Fourier transform, we have [see
(32) at the top of the page] from the Parseval’s theorem. The
two-dimensional form of the Parseval’s theorem is a simple
extension of the one-dimensional form [21].

Substituting (32) into (30), we get

1/2
Ermse(h) = 1ZF Lot : 1
RMSE - sz . b 80771807
2
1 11
= — Fy(l—,n—;h
Pb Z b<so7nso/L>
{Ln|i24n25£0}
(33)

where the last equation follows from the fact that F,(0,0; h) =
P, that can be derived from (13).

APPENDIX 11
PROOF OF LEMMA 3

Proof: Set a point on a grid as the origin with the coordi-
nates (0,0). We can take a vector, connecting this point to one
of its neighboring points on the grid. Let this vector be repre-
sented as [1,0]7, where (-)7 denotes the transpose operation.

Due to the property of rotational symmetry, there is another
vector [cos 1, sin )T, connecting this point to another neigh-
boring point on the grid. These two vectors can be taken as a
set of bases for the two dimensional grid, any other point on the
grid can be written as integer combination of these two vectors.

Also due to the property of rotational symmetry, there must be
another vector [cos 2¢), sin 2], where 0 < ¢ < 7, connecting
the origin to the third neighboring point on the grid. Hence, we
know that

[cos 20, sin 24T = 1[1,0]T + xy[cos e, sinep]T  (34)

where x; and xo are both integers. Hence, we get sin2¢y =
x2sintp, which can be simplified into cosy) = z3/2. Since
—1 < cos®y < 1,z9 canbe only —1, 0, or 1, and ) can be, thus,
only be 27 /3, 7 /2, or 7 /3, which in turn results into triangular,
square, or hexagonal grid, respectively. [ |
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