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Abstract—We consider packet-by-packet rate adaptation to
maximize the throughput over a finite-state Markov channel. To
limit the amount of feedback data, we use past packet acknowl-
edgements (ACKs) and past rates as channel state information.
It is known that the maximum achievable throughput is compu-
tationally prohibitive to determine. Thus, in this paper we derive
two upper bounds on the maximum achievable throughput, which
are tighter than previously known ones. We compare the upper
bounds with a known myopic rate-adaptation policy. Numerical
studies over a wide range of SNR suggest that the myopic rate-
adaptation policy is close to the upper bounds and may be
adequate in slowly time-varying channels.

I. INTRODUCTION

Automatic repeat request (ARQ) [1], [2] is commonly used

to enhance the reliability or the throughput of packet-switched

systems. When the channel experiences an instantaneous deep

fade or strong interference, a packet cannot be recovered. An

explicit negative acknowledgement (NACK), or a missing pos-

itive ACK (PACK), is then used to request a retransmission by

the receiver to the transmitter. To efficiently use the channel,

the rate at which each packet is encoded, i.e., the modulation

constellation and code rate used, should ideally match the

instantaneous channel condition. This rate adaptation poses

a challenging tracking problem for time-varying channels.

To perform rate adaptation, channel state information (CSI)

is needed. Although more informative CSI leads to better

channel tracking and hence higher throughput, in practice the

availability of CSI is limited by the communication system

employed. Rate adaptation can be implemented for any ARQ

system if only the history of ACKs is used as CSI, e.g., [3]–

[5], without assuming channel reciprocity and availability of

additional CSI. Additionally, rates used for previous transmis-

sions can be considered as CSI [6], [7], since the rates are

already known at the transmitter and need only to be stored

in memory. In [6], the CSI is limited to past rates and ACKs

in the same frame, where typically a frame consists of several

packets. In [7], all past rates and ACKs are used as CSI, which

improves the tracking of the channel quality; for brevity we

refer to this as ACK-rate CSI.

In this paper, to match variations in channel conditions, we

employ rate adaptation and seek to maximize the throughput

averaged over an infinite time horizon. To limit the feedback,

ACK-rate CSI is employed, similar to [7]. This is, however,

a PSPACE-complete problem [7], [8], which is considered

at least as hard as an NP-complete problem. This means

that optimal rate adaptation schemes cannot be implemented

practically. Hence, rate adaptation policies based on heuristics

are typically devised, see e.g., [7], [9]. So far, the maximum

achievable throughput has not been quantified numerically. As

such, an upper bound on the maximum achievable throughput

is obtained in [7]. A tighter upper bound may be desirable

to provide a more accurate indication of how close a rate

adaptation scheme performs with respect to the optimal one.

Our contribution pertains in that we establish two new

upper bounds that are tighter than currently known ones. To

obtain these upper bounds, we let the transmitter receive a

CSI that is more informative than ACK-rate CSI. Specifically,

we periodically update the transmitter with a delayed version

of the exact channel coefficient, in addition to the ACK-rate

CSI. We compare the upper bounds with a myopic rate-

adaptation policy [9], that seek to maximize only the current

throughput, without regarding how the future throughput is

affected. Numerical studies show that this policy performs

within one dB of signal-to-noise ratio (SNR) to the derived

upper bounds over a wide range of throughputs at a channel

power correlation of 0.99. Moreover, these upper bounds

tighten the closest known bound [7] by about half a dB.

For our analysis, we use a first-order finite-state Markov

channel (FSMC) [10] to model the variations of the channel

over time, which allows us to obtain tractable results and

to build insights. For simplicity, we assume that a packet is

recovered if and only if the SNR exceeds a threshold related to

the rate. This model is reasonably accurate for a large class of

coding and modulation schemes. Finally, we assume that the

buffer for storing information bits at the transmitter has infinite

size and always contains sufficient bits. This is appropriate if

many information bits are already pre-stored at the transmitter,

such as in streaming applications. In contrast, in [7] the buffer

is finite in size and arriving bits may subsequently be dropped.

This paper is organized as follows. Section II describes the

system model. Section III proposes two upper bounds for the

problem of maximizing the throughput. Numerical results are

obtained in Section IV. Section V concludes the paper.

II. SYSTEM MODEL

The system model is depicted in Fig. 1. At time k =
1, 2, · · · , the CSI available for rate adaptation is denoted as
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Fig. 1. System model for the rate adaptation process.

ck, which will be specified subsequently. The time index

coincides with the packet index for simplicity. Based on the

CSI, the rate adaptation block selects the rate Rk from a

finite set SR to transmit packet k. The rate determines the

coding rate and modulation scheme used. We express the rate

in bits per symbol, i.e., in bits per channel use. After the rate

is determined, the buffer collects RkNs bits from a source.

The bits are then encoded and decoded independently for

each packet, even in retransmissions. This ARQ scheme is

commonly known as a Type I hybrid ARQ scheme [11]. The

buffered bits are encoded as a codeword xk ∈ CNs consisting

of Ns symbols, each of unit power, then sent as packet k.

We consider a flat-fading channel with channel amplitude

Hk ≥ 0 that varies (slowly) between packets but is time

invariant during each packet duration. The received codeword

is given by

yk = Hkejθkxk + nk, k = 1, 2, · · · , (1)

where nk is a i.i.d. circularly symmetric zero-mean unit-

variance complex additive white Gaussian noise (AWGN)

vector of length Ns. We consider coherent detection by a

receiver that knows and corrects the channel phase variations,

so for simplicity we let θk = 0. The rate is assumed to be

known at the receiver for decoding, e.g., via the packet header.

To determine whether a packet error occurs at the receiver,

error detection is carried out at the packet level, usually by a

cyclic redundancy check (CRC). The transmitter is informed

whether the previous packet k−1 has been received correctly

via an ACK bit Ak−1, which is either a positive ACK (PACK)

Ak−1 = 1 or a negative ACK (NACK) Ak−1 = 0. We assume

that all ACKs are received error free.

A. Channel Statistics

For analytical tractability, we use the FSMC to model

temporal variations of the channel amplitude Hk [10]. That

is, Hk is in a discrete set H = {H1, · · · , HNH}, where NH

is the total number of channel states. Further, Hk has the

Markov property that p(Hk|H1, · · · , Hk−1) = p(Hk|Hk−1),
where p(·) is the probability mass function (pmf).

The bivariate (continuous) Rayleigh distribution

p(H̃k, H̃k−1) is fully determined by the power correlation

coefficient [12] ρ̄ = cov(H̃2
k , H̃2

k−1)/
√

var(H̃2
k)var(H̃2

k−1).

The closer ρ̄ is to one, the slower the channel variation. For

our simulations, we model the FSMC such that the channel is

approximately Rayleigh distributed. We assume a stationary

fading channel discretized from the Rayleigh distribution with

average SNR γ̄ = E[|H̃k|2], according to [10]. Specifically,

the Rayleigh distribution is first truncated to lie between

τ0 = 0 and a maximum value of τNH
= α. Then, the discrete

set of channel states H is chosen such that each channel

state occurs with equal probability. To accurately model the

Rayleigh distribution in our simulations, both parameters

NH and α are taken to be large. Our subsequent analysis,

however, applies generally for any FSMC.

In our analysis, we assume that the local-mean parameters γ̄
and ρ̄ are known to the transmitter. These parameters describe

the long-term statistics of the channel and can be accurately

estimated given sufficient time.

B. CSI

We initialize the ACK and rate as A0 = ∅, R0 = ∅,

respectively, where ∅ is the null value. The initial channel

amplitude H0 is randomly generated using the discretized

Rayleigh distribution. We collect all ACKs until time k as

vector ak , [A0, A1, · · · , Ak], and similarly all rates and

channel amplitudes until time k as rk,hk, respectively.

The receiver always has exact knowledge of the channel

state. We study the maximum achievable throughput when the

ACK-rate CSI ck is available at the transmitter at time k:

ck = {Ak−1, Rk−1, ck−1} , (2a)

or equivalently ck = {ak−1, rk−1} . (2b)

This CSI, also depicted in Fig. 1, is the primary focus of our

study. The CSI consists of a recent update of the rate and the

ACK and past CSIs, all available in a causal manner.

C. Throughput

If packet k is received correctly, the contribution of the

packet to the throughput equals the data rate Rk. This occurs

when Ak = 1. If Ak = 0, the packet is lost in an outage

and it is discarded (a common practice in delay-sensitive

applications) or retransmitted. In both cases the instantaneous

throughput is zero. Given Hk, the expected throughput for

packet k encoded at rate Rk is thus

t(Rk, Hk) = Rkp(Ak = 1|Rk, Hk). (3)

Since the channel is not known exactly but instead a CSI ck

is given, the expected throughput becomes

T (Rk; ck) =
∑

Hk

p(Hk|ck) t(Rk, Hk) = EHk|ck
[t]. (4)

Let C(H) = log2

(

1 + |H |2
)

denote the channel capacity.

For our simulations, we assume that the packet is recovered

correctly, i.e., p(Ak = 1|Rk, Hk) = 1, if and only if Rk <
C(H).
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(a) ACK-rate CSI; see Fig. 1.
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(e) Periodic CSI with period P = 2.

Fig. 2. Causal diagrams illustrates the dependence of channel Hk , ACK Ak

and rate Rk as time progresses initially during rate adaptation. Different CSIs
are available at the transmitter (a)-(e). In all cases, the channel is Markovian
and the ACK depends on the rate and channel, but the rate depends on the
specific type of CSI available.

III. MAXIMIZING INFINITE-HORIZON THROUGHPUT

A. Problem Formulation

A rate adaptation policy assigns the rate Rk to use given

the CSI ck for all k. Given policy π, the throughput averaged

over an infinite-time horizon is given by

T (π) = lim
K→∞

1

K
E

[

K
∑

k=1

T (Rk; ck)

]

. (5)

The expectation is carried out over all random variables,

namely channel amplitudes {Hk}, rates {Rk} and CSI {ck} .

We consider the problem of maximizing T (π) by varying

π. We denote the optimal rate adaptation policy as π∗, and the

maximum achievable throughput as T ∗
ACK−rate, i.e.,

T ∗
ACK−rate = max

π
T (π) = T (π∗). (6)

In general, the superscript ∗ denotes optimality while the

subscript denotes the type of CSI used. The computation of

(6) is, however, a PSPACE-complete problem [7], [8]. In this

paper, we seek to instead find upper bounds for T ∗
ACK−rate.

B. Other CSI

To upper bound T ∗
ACK−rate, we consider the use of more

informative CSI, namely full CSI, delayed CSI and periodic

CSI. To illustrate the potential gain of having CSI, we also

consider the case when no CSI is available.

1) Full CSI: ck = Hk. The instantaneous channel ampli-

tude Hk is provided as the CSI.

2) Delayed CSI: ck = Hk−1. Due to causality, full CSI

cannot be provided in practice. Here, a delayed version of

the channel amplitude (where the delay is one packet long) is

provided as the CSI.

3) Periodic CSI: The transmitter is updated periodically at

time k, with period P , a delayed channel amplitude Hk−1.

Additionally, some ACK-rate CSI is available. Specifically,

ck =
{

Hτ(k), [Aτ(k)+1, · · · , Ak−1], [Rτ(k)+1, · · · , Rk−1]
}

. (7)

Here, τ(k) = P ⌊(k − 1)/P ⌋, where ⌊x⌋ denotes the largest

integer less than x. We interpret τ(k) as the most recent time

index prior to k at which the channel amplitude is known.

For example, for P = 1, we get ck = {Hk−1}, which

reduces to the delayed CSI; for P = 2, ck = {Hk−1} for k =
1, 3, · · · , while ck = {Hk−2, Ak−1, Rk−1} for k = 2, 4, · · · .

4) No CSI: ck = ∅. Finally, CSI is not available in this

case (besides knowing the long-term parameters γ̄ and ρ̄).

C. Causal Diagrams to Illustrate Rate Adaptation

We treat each rate as a random variable and the sequence of

rates over time as a stochastic process. The causal relationship

of the channel amplitudes {Hk}, the CSI {ck} and the

rates {Rk} can be represented with a directed graph [13],

which can be established rigourously as a causal diagram

[14]. Let Ak,Bk be sets of random variables at time k
or earlier, and let xk be a random variable at time k. If

p(xk|Ak,Bk) = p(xk|Ak), we draw an arrow from each of

the random variables in Ak to xk. Intuitively we may say that

xk is caused by the random variables in Ak, but not in Bk.

Besides providing a graphical overview of how the random

variables interact, a causal diagram allows any conditional

independence to be easily established [13], [14]. The causal

diagrams for different CSIs are illustrated in Fig. 2 for

K packets, based on the following considerations. For all

k, we have Hk → Hk+1 since the channel amplitude is

Markovian. Moreover, the probability of a PACK or NACK

depends only on the present channel and rate, thus we have

{Hk, Rk} → Ak. Finally, we let each rate depend only on its

corresponding CSI, thus we have ck → Rk. For any CSI, the

joint pdf of hK ,aK , rK can then be factored as

p(hK ,aK , rK)=

K
∏

k=1

p(Hk|Hk−1)p(Rk|ck)p(Ak|Rk, Hk). (8)

D. Main Analytical Results and Discussions

The maximum achievable throughput, given by (6) for

ACK-rate CSI, is also defined similarly for other types of

CSIs by an appropriate substitution of ck according to Sec-

tion III-B. We denote the maximum achievable throughput

for full CSI, delayed CSI, periodic CSI and no CSI as

T ∗
full, T

∗
delayed, T

∗
periodic and T ∗

no, respectively.

We say that a rate-adaptation policy is a myopic policy,

if the rate for each packet is adapted to maximize only the

current throughput, without concerns about the effect on future



achievable throughput. Mathematically, given CSI ck, the rate

obtained by the myopic policy can be expressed as

R∗
k = arg maxT (Rk; ck). (9)

Thus, a myopic policy achieves a throughput of E[T (R∗
k; ck)].

Our first main result is stated in Theorem 1.

Theorem 1: The maximum throughput for full CSI, delayed

CSI or no CSI is achieved by a stationary myopic policy, which

can be expressed, respectively, as

T ∗
full = EHk

[max
Rk

T (Rk; Hk)] = EH [C(H)], (10)

T ∗
delayed = EHk−1

[max
Rk

T (Rk; Hk−1)], (11)

T ∗
no = max

Rk

T (Rk; ∅) = max
R

EH [t(R, H)]. (12)

The maximum achievable throughput for periodic CSI with

period P can be expressed as

T ∗
periodic = Ec1

[J1(c1)] /P. (13)

Here, J1 can be expressed recursively using Jk(ck) with

decreasing k = P, P − 1, · · · , 1, where

JK(cK)= max
Rk

T (Rk; ck), (14)

while for k = P − 1, · · · , 1,

Jk(ck)= max
Rk

{T (Rk; ck) + E [Jk+1(ck+1)]} . (15)

Proof: We employ Bellman’s equations [15] for our proof.

Due to space constraint, we have delegated this and subsequent

proofs to [16].

Discussions: The results (10)–(12) has been obtained previ-

ously, e.g., [7], but has been included here for completeness.

The new result (13) follows from using dynamic programming.

Our next result establishes upper bounds for T ∗
ACK−rate.

Theorem 2: The maximum achievable throughput for full

CSI, delayed CSI, periodic CSI, ACK-rate CSI and no CSI

are ordered decreasingly, i.e.,

T ∗
full ≥ T ∗

delayed ≥ T ∗
periodic ≥ T ∗

ACK−rate ≥ T ∗
no. (16)

Proof: Our proof relies on Theorem 1 and on the Marko-

vian relationship of the channel amplitudes, rates and CSIs

over time as captured in (8). Details are given in [16].

Discussions: With more “informative” CSI, we expect that a

larger throughput can be achieved. Theorem 2 strengthens this

intuition, since we expect that full CSI is more informative

than delayed CSI, delayed CSI is more informative than

periodic CSI, and so on. Consequently, T ∗
periodic serves as a

new upper bound for T ∗
ACK−rate. We note that T ∗

delayed has

been used as an upper bound for T ∗
ACK−rate in [7], but it

cannot be tighter than T ∗
periodic.

Our last result establishes another new tight upper bound.

Theorem 3: Let Tub be defined by1

Tub = EHk−2

[

max
Rk−1

ERk−1,Ak−1|Hk−2

[

max
Rk

T (Rk; c̄k)

]]

, (17)

1The subscript “ub” represents “upper bound” in short.

where c̄k = {Rk−1, Ak−1, Hk−2} is the CSI available at time

k. Then Tub is an upper bound for the maximum achievable

throughput with ACK-rate CSI T ∗
ACK−rate. Moreover, it is a

tighter upper bound than T ∗
delayed, i.e.,

T ∗
delayed ≥ Tub ≥ T ∗

ACK−rate. (18)

Proof: Details can be found in [16].

Discussions: Theorem 3 introduces another upper bound

Tub for T ∗
ACK−rate that is tighter than T ∗

delayed. The superscript
∗ is omitted in this notation Tub, because the (genie-aided)

policy in (17) that achieves Tub cannot be implemented in

practice. From numerical simulations in Section IV, Tub can

be even tighter than T ∗
periodic.

We can interpret (17) as a maximization of the current

throughput T (Rk; c̄k). To maximize the throughput, the past

rate Rk−1 has been optimized given CSI Hk−2 (i.e., an

channel amplitude delayed by one unit of time), while the

current rate Rk is optimized given CSI c̄k. This CSI consists

of the past rate, past ACK and a channel amplitude delayed

by two units of time.

Intuitively, two aspects make Tub achieve a higher through-

put than T ∗
ACK−rate where ACK-rate CSI is available. Firstly,

the CSI c̄k available for adapting Rk is more informative

than in the case of ACK-Rate CSI, with Hk−2 being an

additional CSI. Secondly, both past rate Rk−1 and current

rate Rk are used to maximize the current throughput (for

packet k), without regarding how past throughput (for packet

k − 1) and future throughput (for packet k + 1 onwards) are

affected. However, since past and present rates are always used

to optimize for the current packet, this genie-aided scheme

cannot be implemented in practice.

We can generalize Tub. For a delay-related parameter P ≥
1, we make the common CSI Hk−P available to all P packets,

namely packet k − P + 1 to packet k, in addition to their

ACK-rate CSI. We then concurrently adapt the rates for these

packets to maximize the throughput of packet k. Clearly, (17)

corresponds to the case of P = 2. This generalized Tub still

satisfies Theorem 3 for P ≥ 2, which can be proven similarly

as for P = 2. However, the complexity of computing Tub

increases exponentially with P , hence for our numerical results

we restrict to P = 2.

IV. NUMERICAL STUDY

For our numerical results, we discretized the channel am-

plitude H by using NH = 100 channel states. We set the

maximum channel amplitude as α = 5 for an average SNR of

γ̄ = 0 dB; experiments showed that the throughput for full CSI

is affected negligibly by these choices of α and γ̄. At other

SNRs, we scaled the Rayleigh distribution to γ̄ = 0 dB, then

discretized the distribution similarly. The power correlation

coefficient is fixed at ρ̄ = 0.99. To reduce the effects of

rate quantization and to observe the full dynamic behavior

of rate adaptation, we used finely quantized rates from the set

SR = {0, 0.05, 0.1, · · · , 12} for all SNRs.

We numerically obtain the maximum achievable throughput

for various types of CSI given by (10)– (13) in Theorem 1, as
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well as the upper bound (17) in Theorem 3. In addition, for the

case when ACK-rate CSI is available, we consider the through-

put achieved by a myopic policy, i.e., the rate is adapted

according to (9). The myopic policy is sub-optimal with ACK-

rate CSI, although it is optimal with full CSI, delayed CSI

and no CSI. The throughput for ACK-rate CSI is obtained

by Monte Carlo simulations by averaging the throughput over

the first 1000 packets and over 1000 independent runs. To

implement the myopic policy, we have to track the a posteriori

channel pmf p(Hk|ck). The complexity of tracking can be very

high, so we employ the particle filter to approximate p(Hk|ck)
over time, according to [9]. This approach is accurate when

the number of particles is large, while at a low complexity.

From Fig. 3, we see that the maximum achievable through-

put T ∗
delayed for delayed CSI incurs an SNR loss of around

2 dB compared to T ∗
full for full CSI. This fundamental loss

results from the temporal variation of the channel and the

causality constraint imposed in practice, and is irrecoverable.

Moreover, T ∗
delayed serves as an upper bound for T ∗

ACK−rate

(which cannot be directly computed). However, we see that

both of our proposed bounds are tighter than T ∗
delayed. Specifi-

cally, the upper bound T ∗
periodic that uses periodic CSI is tighter

than T ∗
delayed by about 0.2 dB, while the upper bound Tub is

tighter than T ∗
delayed by about 0.5 dB. In both of these new

tight bounds we have used an equivalent period of P = 2. If P
is increased further, the upper bound can be tightened further,

but the computational complexity quickly becomes prohibitive.

Finally, we observe that the myopic policy that uses ACK-rate

CSI achieves a throughput that is within one dB of the tightest

upper bound (namely Tub) over a wide range of SNRs.

For benchmarking, we also plot the maximum achievable

throughput T ∗
no for no CSI. From Fig. 3, we observe that the

myopic policy that exploits ACK-rate CSI performs signifi-

cantly better than this benchmark. For example, the myopic

policy is about 3.5 dB better at a throughput of 2 bit/symbol.

From these numerical results, we may conclude that even

with a lean ACK-rate CSI, substantial improvement can be

achieved when the channel is slowly time varying. Moreover,

a myopic policy already achieves a throughput that is close

to what can be maximally achieved. If further throughput

improvement is desired, alternatively more informative CSI

can be provided, e.g., in the form of periodic CSI.

V. CONCLUSION AND OUTLOOK

We have considered packet-by-packet rate adaptation to

improve the average throughput, based on past ACKs and past

rates as channel state information. We have proposed two new

upper bounds which are tighter than currently known ones. We

have shown that the myopic policy, which maximizes only

the current throughput, is already fairly close to the maximum

achievable throughput, yet at a reasonable complexity. This

suggests that the myopic policy may be sufficient for some

practical purposes. Future research focus on improving the

mypoic policy for a more general fading channel with multi-

user interference [16]. Other interesting directions include

quantifying and optimizing the delay performance.

REFERENCES

[1] J. M. Wozencraft and M. Horstein, “Coding for two-way channels,” Res.
Lab. Electron., MIT, Cambridge, MA, Tech. Rep. 383, Jan. 1961.

[2] P. Sindhu, “Retransmission error control with memory,” IEEE Trans.

Commun., vol. 25, no. 5, pp. 473–479, May 1977.
[3] P. Chevillat, J. Jelitto, A. N. Barreto, and H. L. Truong, “A dynamic

link adaptation algorithm for IEEE 802.11a wireless LANs,” in Proc.

IEEE ICC’03, Anchorage, May 2003, pp. 1141–1145.
[4] D. Qiao and S. Choi, “Fast-responsive link adaptation for IEEE 802.11

WLANs,” in Proc. IEEE ICC’05, Seoul, Korea, May 2005, pp. 3583–
3588.

[5] A. Kamerman and L. Monteban, “WaveLAN-II: A high-performance
wireless LAN for the unlicensed band,” Bell Labs Technical Journal,
pp. 118–133, Summer 1997.

[6] M. Rice and S. B. Wicker, “Adaptive error control for slowly varying
channels,” IEEE Trans. Commun., vol. 42, no. 234, pp. 917–926,
Feb/Mar/Apr 1994.

[7] A. K. Karmokar, D. V. Djonin, and V. K. Bhargava, “POMDP-based
coding rate adaptation for type-I hybrid ARQ systems over fading
channels with memory,” IEEE Trans. Wireless Commun., vol. 5, no. 12,
pp. 3512–3523, Dec. 2006.

[8] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision processes,” Mathematics of Operations Research, vol. 12, no. 3,
pp. 441–450, 1987.

[9] C. K. Ho and J. Oostveen, “Rate adaptation in time varying channels
using acknowledgement feedbacks,” in Proc. 63rd IEEE Vehicular

Technology Conf., vol. 4, Melbourne, Australia, May 2006, pp. 1683–
1687.

[10] C. C. Tan and N. C. Beaulieu, “On first-order Markov modeling for the
Rayleigh fading channels,” IEEE Trans. Commun., vol. 48, no. 12, pp.
2032–2040, Dec. 2000.

[11] J. D. J. Costello, J. Hagenauer, H. Imai, and S. B. Wicker, “Applications
of error-control coding,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp.
2531–2560, Oct. 1998.

[12] C. C. Tan and N. C. Beaulieu, “Infinite series representations of
the bivariate Rayleigh and Nakagami-m distributions,” IEEE Trans.

Commun., vol. 45, no. 10, pp. 1159–1161, Oct. 1997.
[13] T. P. Minka, “From hidden Markov models to linear dynamical systems,”

Tech. Rep., revised 7/18/99.
[14] J. Pearl, Causality: Models, Reasoning, and Inference. Cambridge,

U.K.: Cambridge University Press, 2000.
[15] D. P. Bertsekas, Dynamic Programming and Optimal Control Vol. 1.

Belmont, MA: Athena Scientific, 1995.
[16] C. K. Ho, J. Oostveen, and J.-P. Linnartz, “Rate adaptation using

acknowledgement feedback in finite-state Markov channels with col-
lisions,” IEEE Trans. Wireless Commun., submitted 2008.


