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1.1 Introduction

The recent achievements in enhanced throughput, efficiency and reliability of
wireless communication systems can largely be contributed to the availabil-
ity of a versatile mathematical framework for the behavior and performance
of digital transmission schemes. The key foundation was Shannon’s 1948 pa-
per [16] which introduced the notion of capacity. The term capacity is defined
as the maximum achievable rate of information exchange, where the maxi-
mization is conducted over all possible choices of transmission and detection
techniques. The existence of a fundamental limit has acted as an irresistable
target for ambitious engineers. However, it was only until the 1990s that the
signal processing capabilities allowed a true exploitation of these insights and
the throughput of practical systems closely reached the capacity limits. An-
other important condition was met earlier: the availability of sufficiently real-
istic statistical models for signals, the noise and the channel.

The research area of biometrics is presumably less mature in this respect,
but strong progress is being made into the statistical modelling of biometric
measurements and of sensor imperfections. Most importantly, the notion of
a distance between two biometric measurements appears to exist, where a
larger distance indicates a lesser likelihood of a statistical deviation. A further
refinement is that errors in measurements can be modelled with well behaved
joint probability functions.

Anticipating on the further sophistication and verification of such models,
this chapter proposes a framework that models the capacity and performance
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of such systems, initially assuming generic probabilistic models for biometric
sources and sensor aberrations.

We argue that the maximum information rate of the biometric measure-
ment channel can be related directly to the identification capacity of the bio-
metric system. The statistical behaviour of the biometrics, as well as the vari-
ability between different (imperfect) measurements are assumed to be known
in the form of a statistical model. This reveals a commonality between com-
mucation systems and biometric systems that can covered by a variation on
Shannon’s theory.

In communications, reliable transfer of data can be separated from secu-
rity functions such as encryption for confidentiality. The usual approach is to
start with source coding to compress the input data into an efficient repre-
sentation, followed by encryption. Thirdly, redundancy is added in the form
of channel coding to allow for error correction. In this regard, the biometric
system is different. Biometric signals can not be compressed, encrypted, pro-
tected by error correction or in any other form be pre-conditioned before being
offered to a sensor. Nonetheless, one needs to involve non-linear operations
during the detection, for instance to prevent impersonation and leakage of
confidential personal information. The second part of this chapter shows that
security operations can be performed to shield important information from
untrusted parties without significantly affecting the user capacity or security
of the system.

1.2 Preliminaries

We distinguish between identification and verification. Identification estimates
which person is present by searching for a match in a data base of reference
data for many persons. The decoder a priori does not know whether he sees
“Peggy” or “Petra”. The outcome of the identification is either the (most
likely) identity of the person present, or an erasue, i.e., the decoder can not
establish who the person is with reasonable accuracy.

When assessing the user capacity of an identification system, we are in-
terested in knowing how many individuals can be identified reliably by a
biometrical identification system, in particular how this is a function of the
amount of observed data and the quality of the observations.

On the other hand, verification attempts to establish whether the prover,
i.e., the person who is undergoing the verification test, truly is Peggy, which
she claims to be. The prover provides not only biometric data but also a
message in which she claims to be Peggy. In security language, the decoder is
called the verifier and is named Victor. He is assumed to have some a priori
knowledge about Peggy, for instance in the form of certified reference data,
but at the start of the protocol he is not yet sure whether Peggy is present
or another person performing an impersonation attack. The outcome of the
verification is binary: either ‘the prover is Peggy’ or ‘the prover is not Peggy.’



1 Communication Theory for Biometrics 3

In identification, the verifier must have access to a data base of reference
data from all individuals. In verification, this is not necessary, and typically
the reference data of only Peggy suffices. An identification algorithm can,
at least in theory, be modified into a verification algorithm by grouping the
set of all outputs except ‘the person is Peggy’ into the single outcome ‘the
person is not Peggy’. However, in general the optimization and decision regions
are usually chosen differently for identification and verification. Identification
systems make the most likely choice, while verification systems are designed
around false positive and false negative probabilities.

Private verification, which we will address from Section 1.8 onwards, is
a special form of verification in which certain security requirements are also
met. In particular, the outcome of private verification can be that the person
not only shows biometrics that fit with Peggy, but also that she knows a secret
that only Peggy is supposed to know. After the private verification session,
Victor preferably doesn’t know what the secret is, although Victor can be
convinced that the prover knows Peggy’s secret.

1.3 Model: Biometrics as Random Codewords

Biometrical systems in general involve two phases. In an enrolment phase all
individuals are observed and for each individual p ∈ {1, · · · ,M} a record Y(p)
is added to a database. This record is called ‘reference data’, ‘enrolment data’
or ‘template’ and contains L symbols from the alphabet Y. The enrolment
data is a noisy version of the biometrical data X(p) ∈ XL corresponding to
the individual p. The set of enrolment data for all users is denoted as the
entire M by L matrix Y = (Y(1),Y(2), · · · ,Y(M)).

In the operational phase, an unknown individual is observed again. The
resulting identification-data Z, another noisy version of the biometrical data
X of the unknown individual, is compared to (all or a subset of) the enrolment
data in the database and the system has to come up with an estimate of the
individual. An essential fact in this procedure is that both in the enrolment
phase and in the operational phase noisy versions of the biometrical data are
obtained. The precise biometrical data X(p) remain unknown.

We use capital notation X, Y and Z for random variables and bold face to
denote vectors, in this section of dimension L. Moreover, x, y and z, denote
realizations or the random variables. Each individual has a biometrical data
sequence x = (x1, x2, · · · , xL) with components xi ∈ X for i = 1, · · · , L. The
sequence x(p) is the sequence for person p.

For the development of the theory, preferably we assume that the compo-
nents of each sequence are independent and identically distributed (IID), and
that the biometric source can generate arbitrarily long sequences (L → ∞).
In practice, most physical or biological parameters show correlation, but often
a set of biometric measurements can be transformed into a sequence of IID
random variables. Communication engineers usually consider data to arrive
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Fig. 1.1. Model of a biometrical identification system. Each biometric measurement
is represented as a noisy channel.

sequentially, and usually speak of a ‘memoryless source’ if X is IID and of a
‘memoryless time-invariant channel’ if for a memoryless source Y (resp. Z) is
also IID.

The measured output sequence Z is used by a decoder. In identification, the
decoder has access to all M enrolment sequences stored in the database Y.
The decoder produces an estimate p̂ of the index of the unknown individ-
ual, p̂ = Dec (z,y) . An erasure ⊥ is also a valid decoder output. Hence
p̂ ∈ {⊥, 1, 2, · · · ,M}. Two relevant system parameters are the maximal error
probability Pmax and the rate R

Pmax
∆= max

1≤p≤M
P
[
P̂ 6= p|P = p

]
and R

∆=
1
L

log2 M. (1.1)

For an ideal binary (X = {0, 1}) biometric system, we have M = 2L, so
R = 1. The Identification Capacity, to be defined later, describes asymptotic
system properties that theoretically apply only for the case of infinitely long
sequences L → ∞. In fact, we will argue that there exists a rate Cid such
that Pmax is arbitrarily small for rates below capacity (R < Cid) and that
Pmax necessarily tends to unity for rates above Cid. This Cid will be called
the identification capacity.

1.3.1 Source and Channel Model

We will denote the probabilities on X as the source model. We define the
‘enrolment channel’ as the probability of Y(p) conditioned on the biometric
X(p). Similarly, we define the operational (or identification) channel as the
probability of Z(p) conditioned on X(p).

In communication systems, the channel is mostly modelled as a statistical
operation that is independent of the source. In our generic biometric frame-
work that is not necessarily the case, although our examples assume this.
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IID Source

Each biometrical data sequence is assumed to be generated by an independent
identically distributed source according to the symbol distribution Q(κ) =
P[xl(p) = κ]. The probability distribution of the full sequence is

PX(p)(x) = P[X(p) = x] =
L∏

l=1

Q(xl). (1.2)

Note that the the distribution Q does not depend on p.

IID Independent Memoryless Channel

In the enrolment phase all biometrical data sequences are observed via an
enrolment channel {Y, Pe(y|x),X}. If we can write

P[Y(p) = y|X(p) = x] =
L∏

l=1

Pe(yl|xl) (1.3)

for any fixed p ∈ {1, · · · ,M}, then the channel is memoryless, so we have the
same channel {Y, Pe(yl|xl),X} for each symbol number l. Moreover, for this
channel, Pe does not depend on p. In the identification phase the biometrical
data sequence z(p) of an unknown individual p is observed via a memory-
less identification channel {Z, Pi(zl|xl),X}. Here Z is the operational output
alphabet. Now

P[Z(p) = z|X(p) = x] =
L∏

l=1

Pi(zl|xl). (1.4)

1.4 Identification Capacity

Definition 1.1. The identification capacity of a biometrical parameter is the
largest value of Cid such that for any (arbitrarily small) δ > 0 and sufficiently
large L there exist decoders that achieve a rate Rid of

Rid ≥ Cid − δ (1.5)

at vanishingly small error rate Pmax ≤ δ.

Theorem 1 The identification capacity of a biometrical system with IID
source and independent IID channel is given by the mutual information

Cid = I(Y;Z) (1.6)

for arbitrary fixed p.
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We use the identity I(A;B) = H(A) + H(B)− H(A,B). The entropies H(Y),
H(Z) and H(Y,Z) are computed from the probability of the ‘true’ biometric
X and the transition properties over the enrolment and identification channel,
where

P[Y(p) = y] =
L∏

j=1

∑
xj∈X

Q(xj)Pe(yj |xj)

P[Z(p) = z] =
L∏

j=1

∑
xj∈X

Q(xj)Pi(zj |xj)

P[Y(p) = y,Z(p) = z] =
L∏

j=1

∑
xj∈X

Q(xj)Pe(yj |xj)Pi(zj |xj).

Note that none of these probabilities depend on p. For an IID (memoryless)
source, H(X) =

∑L
l=1 H(xl) = LH(xl). Similarly, the entropies of Y and Z

can be calculated component-wise.

1.5 Proof outline for Theorem 1

As in communication theory, the proof of the capacity theorem consists of a
part that there exist rates that achieve capacity and a part that proves the
non-existence of rates above Cid with a low average error rate.

Another important step is the random coding argument [5]. This is the
observation that we can prove that the average over all randomly chosen
sequences achieves an error rate that vanishes. In the development of a the-
oretical framework for communication systems, this was an innovative step
that laid the foundation for several proofs. Here Shannon’s theory apparently
fits biometrics naturally, while for communication systems it was a creative,
initially believed to be somewhat artificial assumption to support the deriva-
tions of bounds. As first exploited in [20], random coding is a very natural
and appropriate model for biometric systems, where the source model is one of
randomly generated sequences5. In communication systems, an engineer can
choose an optimum code sequence for every potential message to be transmit-
ted. Shannon postulated that if the engineer just picks random sequences to
represent messages on average he achieves capacity, so there must be codes
that do at least as good. Note that the generation of the IID biometrical
data yields the randomness that makes it all work. We get the random code
{y(1),y(2), · · · ,y(M)} by the very nature of biometrics.

5 Yet, the distribution and statistical dependence of biometrics can be questioned.
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1.5.1 Achievability

In this part we prove that for all δ ≥ 0 the rate Rid ≥ I(X,Y) − δ can be
achieved.

To prove that there are rates that achieve low error rates we postulate a
decoder that is based on typical sequences for Y, Z and Y,Z jointly. Typical
sets are explained in more detail in textbooks such as [5]. The core idea is
that a random sequence is with probability 1 a typical sequence. This implies
that any typical sequence has a probability that is close to 2−H(Y), 2−H(Z) or
2−H(Y,Z), respectively. More precisely, the jointly typical set Aε is defined as
the collection of sequences (Y,Z) such that PY Z(y, z) satisfies

2−L(H(yl,zl)+ε) ≤ PY Z(y, z) ≤ 2−L(H(yl,zl)−ε) (1.7)

and similarly for sequences of Y and Z separately. An important property is
that a sequence Y,Z chosen randomly according to the underlying biometric
statistical model is a typical sequence with probability higher than 1− ε.

For our proof, we postulate a decoder that generates as its output the
unique index p̂ satisfying

(y(p̂), z) ∈ Aε. (1.8)

If no unique p̂ exists the decoder outputs an erasure.
Two kinds of error can occur. An error of the first kind (c.f. a false rejection

if we had addressed a verification system) occurs when the enrolment sequence
of the tested individual p is not jointly typical with his identification sequence
resulting from the test. We define the event that the enrolment Y(p) and an
observed identification Z are jointly typical as

Ep = {(Y(p),Z) ∈ Aε}

Without loss of generality we denote the test sequence as p = 1. Thus a
false rejection corresponds to ¬E1. An error of the second kind, c.f. a false
acceptance, occurs if the enrolment sequence of some other individual p′ 6= p
is typical with p’s identification sequence. This corresponds to E2, E3, ....EM

For errors of the first kind, the probability P[(Y(p),Z(p)) /∈ Aε] ≤ ε for all
large enough L. For errors of the second kind, we calculate the probability that
two randomly chosen sequences Y and Z match, where the sequences are not
necessarily taken from a specific realization of a population but produced by
a statistical process that ramdomly generates sequences over XL. Let z be the
output of the identification channel that is caused by X(p). For all y ∈ YL

and z ∈ ZL and p′ 6= p we have

P[Y(p′) = y,Z(p) = z] =
L∏

l=1

∑
κ∈X

Q(κ)Pe(yl|κ)
∑
λ∈X

Q(λ)Pi(zl|λ). (1.9)

Using the proporties of typical sequences (e.g. Theorem 8.6.1. in [5]), the false
acceptance probability of two randomly chosen sequences satisfies
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P[(Y(p′),Z(p)) ∈ Aε] ≤ 2−I(Y(p);Z(p))+3Lε.

An error of any kind occurs with probability P[e] = P[e|p = 1] = P[¬E1 ∪ E2 ∪ E3 ∪ ... ∪ EM ].
By applying the union bound one obtains

P[e|p] = P

[
¬E1 ∪

M⋃
p=2

Ep

]
≤ P[¬E1] +

M∑
p=2

P[Ep] .

Hence for sufficiently large L we have

P[e] ≤ ε +
2LR∑
i=2

2−I(Y(p);Z(p))+3Lε ≤ ε + 23Lε2−[I(Y(p);Z(p))−LR] ≤ 2ε.

Thus P
[
P̂ 6= p|P = p

]
can be made smaller than 2ε by increasing L.

1.5.2 Converse

In this part we show that there exists no identification scheme that can identify
more than 2I(Y;Z) persons with negligible error probability.

P
[
P̂ 6= P

]
≤ max

p=1,··· ,M
P
[
P̂ 6= p|P = p

]
, (1.10)

which we require to remain arbitrarily small. Applying Fano’s inequality we
get for the entropy in P , knowing the data base Y and observation Z

H(P |Y,Z) ≤ 1 + P
[
P̂ 6= P

]
log2 M. (1.11)

Note that we did not assume any a priori distribution over the individuals
that are to be identified. Let us see what happens if we assume that P is
uniformly distributed over {1, 2, · · · ,M}. Using inequality (1.11) we obtain

log2 M = H(P ) = H(P |Y) = H(P |Y)− H(P |Z,Y) + H(P |Z,Y)

≤ I(P ;Z|Y) + 1 + P
[
P̂ 6= P

]
log2 M. (1.12)

Another useful inequality is obtained as follows,

I(P ;Z|Y) = H(Z|Y)− H(Z|P,Y) ≤ H(Z)− H(Z|P,Y)
= H(Z)− H(Z(P )|Y(P )) = I(Z(P );Y(P )) = LI(Yl;Zl).(1.13)

Combining (1.12) and (1.13) we get

log2 M ≤ LI(Yl;Zl) + 1 + P
[
P̂ 6= P

]
log2 M

or
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log2 M

L
≤ I(Yl;Zl) + 1/L

1− P
[
P̂ 6= P

] .

When we take the limit L →∞, we obtain Rid ≤ I(Yl;Zl)(1 + δ). Now as we
let δ → 0 (where δ is defined in Def. 1.1), which implies P

[
P̂ 6= P

]
→ 0, we

have that Rid ≤ I(Y ;Z). By combination with the first part of the proof, it
follows that the capacity Cid = I(Y ;Z).

1.5.3 Example: Bernoulli variables

Let’s consider a hypothetical biometric that gives balanced IID binary values.
Let the biometric X form a Bernoulli random variable (X = {0, 1}) with
parameter p = P[X = 1] = 0.5. Moreover let

Y = X ⊕Ne, Z = X ⊕Ni, (1.14)

with Bernoulli noise variables Ne and Ni having parameters de and di, respec-
tively. The addition ⊕ is modulo 2. Then

P[Yl 6= Zl] = d = de(1− di) + (1− de)di. (1.15)

The mutual information per symbol is given by

I(Yl;Zl) = H(Zl)− H(Zl|Yl) (1.16)

which yields I(Y,Z) = L[1 − h(d)], with h(d) the binary entropy function,
defined as h(d) = −d log2 d − (1 − d) log2(1 − d). Note that in this example
we can conceptually think of the enrolment process as error free, and the
identification process as distorted by the concatenation of the original channels
X → Y and X → Z, yielding a binary symmetric channel with probability of
error d.

1.5.4 Example: IID Gaussian variables

As a second example, we consider the case that X is IID Gaussian, zero-mean,
with variance σ2

0 . Moreover, for every dimension l, let

Yl = Xl + Ne, Zl = Xl + Ni, (1.17)

with zero-mean Gaussian noise variables Ne and Ni having variances σ2
e and

σ2
i respectively. The covariance matrix ΣY Z is given by

ΣY Z =
(

E[Y 2
l ]− E[Yl]2 E[YlZl]− E[Yl]E[Zl]

E[ZlYl]− E[Zl]E[Yl] E[Z2
l ]− E[Zl]2

)
=

(
σ2

0 + σ2
e σ2

0

σ2
0 σ2

0 + σ2
i

)
.

(1.18)
Hence, using H(Yl, Zl) = 1

2 log |det ΣY Z |, it follows that



10 Linnartz, Tuyls, Škorić

I(Yl;Zl) =
1
2

log2

(
1 +

σ2
0

σ2
e + σ2

i + σ2
eσ2

i /σ2
0

)
. (1.19)

Note that in this example, in contrast to Section 1.5.3, the combined channel
Yl → Xl → Zl with σ2

e > 0 cannot be represented as a noiseless enrolment
followed by an additive Gaussian channel with some noise power depending
only on σ2

e and σ2
i . This phenomenon finds its cause in the fact that in general

the backward channel of an additive channel is non-additive.
Often, enrolment can be performed under ‘ideal’ circumstances, or can

be repeated several times to reduce the noise. Then the noise-free biometric
Y = X becomes available. In that case Cid = 1 − h(di) in the example of
Bernoulli variables and Cid = 1

2 log(1 + σ2
0/σ2

i ) for Gaussian variables.

1.6 Hypothesis testing; maximum likelihood

We have seen before that a decoder which is based on typicality achieves capac-
ity. Nevertheless such a decoder may not be optimal in the sense of minimizing
the maximum error probability for finite L. In a more general detection theo-
retical setting, we may see our identification problem as a hypothesis testing
procedure, i.e. a procedure that aims at achieving the best trade-off between
certain error probabilities. An optimal hypothesis testing procedure is based
on the likelihoods of the observed data (enrolment data and identification
data) given the individual p. The maximum likelihood decoder selects

p̂ = arg max
p

P[Z(p) = z|Y(p) = y(p)] (1.20)

where the observation z is fixed, i.e. not a function of p. For the decoder, the
relevant probability can be written as

P[Z(p) = z|Y(p) = y(p)] =
L∏

j=1

∑
x∈X Q(x)Pe(yj(p)|x)Pi(zj |x)∑

x∈X Q(x)Pe(yj(p)|x)
. (1.21)

Here the sum is over all possible x, which is of modest complexity. Particularly
if X contains IID elements, and if the channel models Pe(yj |x) and Pi(zj |x)
are known, e.g. from Chapter 1.5.3 and 1.5.4, the complexiy of this calculation
is small. Yet this decision variable has to be calculated for all p in the data
base.

This illustrates how the enrolment output sequences Y(1),Y(2), · · · ,Y(M)
act as as codewords. These codewords are observed via a memoryless channel
{Z, P (z|y),Y}.

Note that decoding according to our achievability proof involves an ex-
haustive search procedure. It is not known how an identification scheme can
be modified in such a way that the decoding complexity is decreased. How-
ever, the helper data proposed in the second half of this chapter has the side
effect of accelerating the recognition process.
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1.7 Private templates

Identification inherently requires that a verifier searches for matches with the
measured Z in a data base Y that contains data about the entire popula-
tion. This introduces the security and privacy threat that the verifier who
steals biometric templates from some (or even all) persons in the data base
can perform impersonation attacks. This threat was recognized by several
researchers [3, 11, 18]. When a private verification system is used on a large
scale, the reference data base has to be made available to many different ver-
ifiers, who, in general, cannot be trusted. Matsumoto et al. [12] showed that
information stolen from a data base can be misused to construct artificial
biometrics to impersonate people. Creation of artificial biometrics is possible
even if only part of the template is available. Hill [7] showed that if only minu-
tiae templates of a fingerprint are available, it is still possible to successfully
construct artificial biometrics that pass private verification.

To develop an insight in the security aspects of biometrics, we distinguish
between verification and private verification. In a typical verification situa-
tion, access to the reference template allows a malicious Victor to artificially
construct measurement data that will pass the verification test, even if Peggy
has never exposed herself to a biometric measurement after the enrolment.

In private verification, the reference data should not leak relevant informa-
tion to allow Victor to (effectively) construct valid measurement data. Such
protection is common practice for storage of computer passwords. When a
computer verifies a password, it does not compare the password Y typed by
the user with a stored reference copy. Instead, the password is processed by
a cryptographic one-way function F and the outcome is compared against a
locally stored reference string F (Y). So Y is only temporarily available on the
system hardware, and no stored data allows calculation of Y. This prevents
attacks from the inside by stealing unencrypted or decryptable secrets.

The main difference between password checking and biometric private ver-
ification is that during biometric measurements it is unavoidable that noise or
other aberrations occur. Noisy measurement data are quantized into discrete
values before these can be processed by any cryptographic function. Due to
external noise, the outcome of the quantization may differ from experiment to
experiment. In particular if one of Peggy’s biometric parameters has a value
close to a quantization threshold, minor amounts of noise can change the out-
come. Minor changes at the input of a cryptographic function are amplified
and the outcome will bear no resemblance to the expected outcome. This prop-
erty, commonly refered to as ‘confusion’ and ‘diffusion’, makes it less trivial to
use biometric data as input to a cryptographic function. The notion of near
matches or distance between enrolment and operational measurements van-
ishes after encryption or any other cryptographically strong operation. Hence,
the comparison of measured data with reference data can not be executed in
the encrypted domain without prior precautions to contain the effect of noise.
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Furthermore, with increasing M and L, the probability that a ‘randomly
created’ natural biometric vector lies near a decision boundary goes to unity
for any a priori defined digitization scheme. Error correction coding does not
help, because the biometrics are generated randomly thus do not naturally lie
centered inside decision regions, as codewords would do.

A common misperception is that encryption of Y, and decryption prior to
the verification solves this security threat. This would not prevent a dishonest
Victor from stealing the decrypted template Y, because Victor knows the
decryption key.

The next section presents an algorithm to resolve these threats. It is based
on a ‘helper data scheme’ that resembles ‘fuzzy extractors’, covered in Chap-
ter ??.

Besides private verification, a further application can be the generation
of a secret key. We illustrate this by the example of access to a data base of
highly confidential encrypted documents to which only a (set of) specific users
is allowed access. The retrieval system authenticates humans and retrieves a
decryption key from their biometric parameters. This system must be pro-
tected against a dishonest software programmer Mallory who has access to
the biometric reference data from all users. If Mallory downloads the com-
plete reference data file, all encrypted documents, and possibly reads all the
software code of the system, she should not be able to decrypt any document.

Meanwhile, it is important to realize that protection of the reference data
stored in a database is not a complete solution to the above-mentioned threats.
After having had an opportunity to measure operational biometric data, a dis-
honest Victor uses these measurement data. This can happen without anyone
noticing it: Victor grabs the fingerprint image left behind on a sensor. This
corresponds to grabbing all keystrokes including the plain passwords typed
by a user. We do not address this last attack in this chapter.

1.7.1 The Helper Data Architecture

We observe that a biometric private verification system does not need to
store the original biometric templates. Examples of systems that use other
architectures and achieve protection of templates are private biometrics [6],
fuzzy commitment [9], cancelable biometrics [15], fuzzy vault [8], quantizing
secret extraction [10] and secret extraction from significant components [19].
The systems proposed in [6, 8–10, 19] are all based on architectures that use
helper data.

In order to combine private biometric verification with cryptographic tech-
niques, we derive helper data during the enrolment phase. The helper data W
guarantees that a unique string S can be derived from the biometrics of an in-
dividual during the private verification as well as during the enrolment phase.
The helper data serves two purposes. On the one hand it is used to reduce
the effects of noise in the biometric measurements. More precisely, it ensures
that with high probability the measured noisy biometric always falls within
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the same decision region taken by the detector. As a result, exactly the same
string S is always extracted from the same p. Since the string S is not affected
by noise anymore, it can be used as input to cryptographic primitives with-
out causing avalanches of errors. Thus S can be handled in the same secure
manner as computer passwords.

However, since random biometrics are usually not uniformly distributed,
the extracted string S is not guaranteed to be uniform. Therefore, another
part of the helper data is used to extract the randomness of the biometric
measurements. Usually this is done by letting the helper data being a pointer
to a randomly chosen function from a universal set of hash functions (see
Chapter ??). The left-over hash lemma guarantees that the hashed string is
indistinguishable from a uniformly random string. The error correction phase
is usually called information reconciliation and the randomness extraction the
privacy amplification phase.

Private biometric verification consists of two phases: enrolment and private
verification. During the enrolment phase, Peggy visits a Certification Author-
ity (CA) where her biometrics are measured and reference data (including
helper data) are generated. For on-line applications, such protected reference
data can be stored in a central data base (possibly even publicly accessible),
or these data can be certified with a digital signature of the CA, and given
to Peggy. In the latter case, it is Peggy’s responsibility to (securely) give this
certified reference data to Victor. Thus, the reference data consists of two
parts: the cryptographic key value V = F (S) against which the processed
measurement data is compared, and the data W which assists in achieving
reliable detection.

Assuming that these data are available as V(Peggy) = v;W(Peggy) = w,
Peggy authenticates herself as follows:

• When she claims to be Peggy, she sends her identifier message to Victor.
• Victor retrieves the helper data w from an on-line trusted data base. Al-

ternatively, in an off-line application Peggy could provide Victor with ref-
erence data (v,w) certified by the CA.

• Peggy allows Victor to take a noisy measurement z of her biometrics.
• Victor calculates s′ = G(w, z). Here G is a ’shielding’ function, to be

discussed later.
• Optional for key establishment: Victor can extract further cryptographic

keys from s′, for instance to generate an access key.
• Victor calculates the cryptographic hash function v′ = F (s′).
• v′ is compared with the reference data v. If v′ = v, the private verification

is successful.

Here, we used lower-case n,x,y, z,v,w to explicitly denote that the protocol
operates on realizations of the random variables N, X, Y, Z, V, and W, re-
spectively. The length of these vectors is denoted as LN , LX , LY , LZ , LV , LW .
Often, the same type of measurement is done for enrolment and for verifi-
cation, thus LY = LZ and Y = Z. Further, S and F (S) are discrete-valued



14 Linnartz, Tuyls, Škorić

(typically binary) vectors of length LS and LF , resp. Note that here we make
an exact match. Checking for imperfect matches would not make sense be-
cause of the cryptographic operation F . Measurement imperfections (noise)
are eliminated by the use of W and the so-called δ-contracting property of
the shielding function G.

1.7.2 Definitions

During enrolment, Y(Peggy) = y is measured. Some secret S(Peggy) = s ∈
SLS is determined, and the corresponding V = F (s) ∈ VLV is computed. In
later sections, we will address whether s can be chosen arbitrarily (s ∈ SLs)
by the CA, or that the enrolment algorithm explicitly outputs one specific
value of s based on y. Also, a value for W(Peggy) = w is calculated such
that not only G(w,y) = s but also during private verification G(w, z) = s
for z ≈ x, more precisely for distances d(z,x) ≤ δ. We call a function that
supports this property δ-contracting.

Definition 1.2. Let G : WLw × YLy → SLS be a function and δ > 0 be a
nonnegative real number. The function G is called δ-contracting if and only if
for all y ∈ YLY there exists (an efficient algorithm to find) at least one vector
w ∈ WLW and one s ∈ SLS such that G(w,y) = G(w, z) = S for all z ∈ YLY

such that d(z,y) ≤ δ.

We now argue that helper data is an essential attribute to make a se-
cure biometrics system. We show this by contradiction, namely by initially
assuming that W does not depend on p.

Theorem 1.1. If G(w, z) = f(z) for all w, then either the largest contracting
range of G is δ = 0 or G(w, z) is a constant independent of z.

Proof: Take W = w0. Assume G is δ-contracting, with δ > 0. Choose
two points z1 and z2 such that G(w0, z1) = s1 and G(w0, z2) = s2. Define
a vector r = λ(z2 − z1) such that 0 < d(0, r) < δ. Then s1 = G(w0, z1) =
G(w0, z1 + r) = G(w0, z1 + 2r) = ... = s2. Thus G(w0, z1) = G(w0, z2) is
constant. �

Corrolary: The desirable property that biometric data can be verified in
the encrypted domain (in an information theoretic sense) cannot be achieved
unless person-specific data W is used. Private biometric verification that at-
tempts to process Z without such helper data is doomed to store decryptable
user templates.

Any function is 0-contracting. If the radius δ is properly chosen as a func-
tion of the noise power, the δ-contracting property ensures that despite the
noise, for a specific Peggy all likely measurements Z will be mapped to the
same value of S. This can particularly be guaranteed if L → ∞. For private
verification schemes with large LY = LZ = L, d(Z,Y) → σn

√
L, where σ2

n

is the noise power. So one needs to ensure that δ is sufficiently larger than
σn

√
L.
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Definition 1.3. Let G : WLW ×YLY → SLS be a δ-contracting function with
δ > 0 and let ε > 0 be a non-negative real number. The function G is called
“ε-revealing” if and only if for all y ∈ YLY there exists (an efficient algorithm
to find) a vector w ∈ WLW such that I(w;G(w,y)) < ε.

Hence W conceals S: it reveals only a well-defined, small amount of infor-
mation about S. Similarly, we require that F (S) conceals S. However we do
not interpret this in the information-theoretic sense but in the complexity-
theoretic sense, i.e., the computational effort to obtain a reasonable estimate
of X or S from F (S) is prohibitive, even though in the information theoretic
sense F (S) may (uniquely) define S.

The above definitions address properties of the shielding function G. Effi-
cient enrolment requires an algorithm Γ (Y) → (W,S) to generate the helper
data and the secret. The procedure Γ is a randomized procedure and only
used during enrolment.

1.7.3 Example: Quantization Indexing for IID Gaussian

Let X,Y,Z,Ne,Ni be Gaussian variables as defined in Section 1.5.4. More-
over LX = LY = LZ = LW = LS = L, and X = Y = Z = W = R. The
core idea is that measured data are quantized. The quantization intervals are
alternatingly mapped to sl = 0 and sl = 1. The helper data wl acts as a
bias in the biometric value to ensure detection of the correct value of sl. This
example resembles strategies known in the literature on Quantization Index
Modulation (QIM) [4], which is a specific form of electronic watermarking,
and on writing on dirty paper. QIM was applied to biometrics in [10].

Enrolment in QIM

During enrolment, yl is measured and the CA generates wl such that the
value of yl + wl is pushed to the center of the nearest quantization interval
that corresponds to the correct sl value,

wl =
{

(2n + 1
2 )q − yl if sl = 1

(2n− 1
2 )q − yl if sl = 0 (1.22)

where n ∈ Z is chosen such that −q < wl < q and q is an appropriately
chosen quantization step size. The value of n is discarded, but the values wl

are released as helper data. Fig. 1.2 illustrates the quantization.

Fig. 1.2. Quantization levels for the shielding function G defined in (1.23). The
helper data w pushes y towards the center of a quantization interval (indicated by
dots).
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Private verification in QIM

For the l-th component of Z, the δ-contracting function is

s′l = G(wl, zl) =
{

1 if 2nq < zl + wl ≤ (2n + 1)q for any n ∈ Z
0 if (2n− 1)q < zl + wl ≤ nq for any n ∈ Z (1.23)

The contraction range δ equals q/2.

Error Probability in QIM

The probability of a bit error in the component sl in the case of an honest
pair Peggy-Victor is given by

Pe = 2
∞∑

b=0

{
Q([2b +

3
2
]

q

σn
)−Q([2b +

1
2
]

q

σn
)
}

, (1.24)

where Q(x) is the
∫ x

0
integral over the Gaussian pdf with unit variance, and

σn =
√

σ2
e + σ2

i is the strength of the noise Ni−Ne. An error-correcting code
can be used to correct the bit errors. The maximum achievable code rate is
1 − h(Pe). In practice this rate is only approached for L → ∞. Large values
of q ensure reliable detection, because Pe becomes small. However, we will
show now that the information leakage is minimized only if q is small.

Information leakage in QIM

Using Bayes’ rule, for given wl we can express the a posteriori probability of
the event Sl = 1 as

P[Sl = 1|Wl = wl] =
f(wl|Sl = 1)

f(wl)
P[Sl = 1]. (1.25)

Here f is the probability density function of W . Information leaks whenever
f(wl|Sl = 1) 6= f(wl|Sl = 0). Since the pdf of Xl is not flat, some values of wl

are more likely than others even within −q < wl < q. This gives an imbalance
in the above a posteriori probability.

We now quantify the information leakage given our assumptions on the
statistical behavior of the input signal Xl. The statistics of Wl are determined
by those of Xl and Sl. We observe that for sl = 1, wl = (2n + 1/2)q − yl, so

f(wl|Sl = 1) =

{
0 for |wl| ≥ q∑∞

n=−∞
1√

2πσ2
y

exp
(
− ([2n+1/2]q−wl)

2

2σ2
y

)
|wl| < q.

(1.26)
Here we defined σ2

y = σ2
0 + σ2

e . An expression similar to (1.26) is obtained for
f(wl|Sl = 0). We have the symmetry relations f(wl|Sl = s) = f(q−wl|Sl = s)
and f(wl|Sl = 0) = f(−wl|S = 1) [10]. The mutual information follows from
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I(Wl;Sl) = H(Sl)−
∫ q

−q

H(Sl|Wl = w)f(w)dw. (1.27)

Using Bayes’ rule, the symmetry properties of f , and the uniformity of S, we
obtain

I(Wl;Sl) =
∫ q

−q

f(w|Sl = 1) log2 f(w|Sl = 1)dw −
∫ q

−q

f(w) log2 f(w)dw.

(1.28)
Fig. 1.7.3 shows that quantization values as crude as q/σy = 1 are sufficient
to ensure small leakage (< 10−4). Crude quantization steps are favorable as
these allow reliable detection (i.e., a large contracting range).

Fig. 1.3. Mutual information I(Wl; Sl) as a function of the quantisation step
size q/σy.

1.8 Secrecy and Identification Capacity

It is natural to ask what the maximum length is of the secret key that can be
extract from a biometric measurement. The size of the secrets is expressed as
the rate Rs, expressed as the effective key size in bits per biometric symbol
(entropy bits / symbol). The maximum achievable rate is defined accordingly
by the secrecy capacity Cs.

Definition 1.4 (Secrecy Capacity). The secrecy capacity Cs is the maximal
rate Rs, such that for all ε > 0, there exist encoders and decoders that, for
sufficiently large Lx, achieve

P[S′ 6= S] ≤ ε, (1.29)

I(W;S) ≤ ε, (1.30)

1
L

H(S) ≥ (Rs − ε). (1.31)

Eq. (1.29) ensures correctness of the secret, Eq. (1.30) ensures secrecy with
respect to eavesdropping of the communication line and Eq. (1.31) guarantees
high entropy in the secret. Eq. (1.31) is a stronger requirement than versatility.

If I(W;S) is small and H is large, an impersonation attack based on arti-
ficial biometrics that pass an private verification. We remark that in general
I(V,W;X) is large in the strict information-theoretic sense. In the compu-
tational sense, however, it is infeasible to derive information about S from
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V. Hence from a computational point of view V does not reveal information
about X.

The uncertainty expressed by H(S|W) = H(S)−I(W;S) defines a security
parameter κ for impersonation. It gives the number of attempts that have to
be performed in order to achieve successful impersonation.

In order to compute the secrecy capacity the following lemma is needed,
which we present here for the sake of completeness.

Lemma 1.1. For continuous random variables X, Y and ε > 0, there exists
a sequence of discretized random variables Xd, Yd that converge pointwise to
X, Y (when d →∞) such that for sufficiently large d,

I(X;Y ) ≥ I(Xd;Yd) ≥ I(X;Y )− ε. (1.32)

With some modifications to the results from [2,13], the following theorem can
be proven using lemma 1.1.

Theorem 1.2. The secrecy capacity of a biometric system equals

Cs = I (Y(p);Z(p)) . (1.33)

Proof. We start with the achievability argument. The proof that I(Y;Z) can
be achieved if Y and Z are discrete variables, is analogous to the proof in [2].
In order to prove achievability in the continuous case, we choose ε ≥ 0, and
approximate the random variables Y, Z by discretized (quantized) versions,
Yd,Zd such that I(Y;Z)− I(Yd;Zd) ≤ ε. (The fact that such a quantization
exists follows from lemma 1.2). Then, taking the encoder that achieves the
capacity for the discrete case (Yd,Zd) it follows that we can achieve I(Yd;Zd).
Since this can be done for any ε ≥ 0 the proof follows.

The fact that I(Y;Z) is an upper bound for Cs for discrete random vari-
ables, follows from the Fano inequality and some basic entropy inequalities.
For the continuous case this follows again by an approximation argument
using Lemma 1.1. �

It was proven in [17] that there exists a biometric private verification algorithm
that achieves both the secrecy capacity Cs and the identification capacity Cid

at the same time.

1.8.1 Identification Capacity, Revisited

We have derived the secrecy capacity for secure private verification systems
with helper data. Yet, the identification capacity was up to this section only
established for systems without helper data. In this section we show that the
identification capacity is equal to the channel capacity of the biometric sensor
if helper data and shielding functions are applied.
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Definition 1.5 (Identification Capacity). The identification capacity Cid

is the maximal rate Rid, such that for every ε > 0, for sufficiently large L,
there exists an identification strategy that achieves

avg P[P̂ 6= P ] ≤ ε, and
1
L

log M ≥ Rid − ε, (1.34)

where the average is over all individuals and over all random realizations of
all biometrics.

A private verification scheme with helper data can be used for identifica-
tion: for a biometric measurement y the verifier performs an exhausive search
over the entire population of candidates p′ ∈ {1, . . . ,M} by retrieving from a
database the values w,v for each candidate and checking if F (G(w,y)) = v.
In practice such a system can be computationally more efficient than a
straightforward identification scheme mentioned in the first part of this chap-
ter: it does not need to consider near matches, but only exact matches. The
exact matches are performed in the binary domain and therefore very efficient.
The above definition addresses such a system.

For systems without enrolment noise, it can be shown [14, 20] that if the
δ-contracting range is chosen such that it matches the sphere that verifica-
tion noise creates around X, the biometric identification systems, including
template protecting systems, satisfy Cid = I (X;Y). This result can be inter-
preted merely as a statement that helper data does not negatively influence
the performance.

1.9 Relation with Fuzzy Extractors

In this book several chapters deal with key extraction from noisy data in
general and biometrics in particular. A well-known technique that is treated
in Chapter ??, is called Fuzzy Extractors. Here we prove that the helper data
technique developed in this chapter is equivalent to that of a Fuzzy Extractor.
We need some details of the construction of a Fuzzy Extractor. For those
details we refer to Chapter ??. We define

Gen(y) = Γ (y) and Rep(z,w) = G(w, z).

With this definition, the following two theorems have been proven [1].

Theorem 1 Suppose that there exists a (Y,m, l, δ, ε ≤ 1/4) fuzzy extractor
with generation and reproduction procedures Gen and Rep constructed by using
a secure sketch and with K uniformly distributed over {0, 1}l statistically inde-
pendent from (X, Y ). Then, there exists a δ-contracting, η-revealing function
G, with counterpart Γ , with

η = h(2ε) + 2ε(|Gen(y)|+ |K|) + h(ε) + ε|K|,
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This theorem proves that a Fuzzy Extractor implies a helper data algorithm
which is η-revealing.

Furthermore, we have the following converse.

Theorem 2 Let G be a δ-contracting ε-revealing function creating a uni-
formly random key K on {0, 1}l wrt to a probability distribution PXY with
H∞(X) > m. Then there exists a (X ,m, l, δ,

√
ε) fuzzy extractor.

For the proofs of theorems 1 and 2 we refer the reader to [1].
Theorem 2 explains that a helper data algorithm leads to a Fuzzy Ex-

tractor whose key is ‘only’
√

ε distinguishable from random if the helper data
algorithm was ε-revealing.

Theorems 1 and 2 show that Fuzzy Extractors and Helper Data algorithms
are equivalent up to parameter values.

1.10 Conclusion

We have developed an information-theoretic framework for biometrics. We
described biometric identification in terms of two communication channels
both having the same biometric source X, but with the enrolment data Y
and the operational measurement Z as destinations. We have shown that it is
possible to derive bounds on the capacity of biometric identification systems
with relatively simple methods. The main result is that capacity can be com-
puted as the mutual information I(Y;Z) between a input source Y and an
output source Z that are related by the concatenation of the backward enrol-
ment channel and the forward identification channel. The base-2 logarithm of
the number of persons that can be distinguished reliably is expressed as the
number of symbols in the observation, multiplied by the rate R. For rates R
smaller than I(Y;Z) this probability can also be made smaller than any ε > 0
by increasing L.

We showed that the secrecy capacity measures the entropy available in a
key derived from the person. This result has been connected to a protocol
that satisfies privacy and security requirements, in particular the protection
of templates to prevent misuse by a dishonest verifier. We have introduced
the notion of δ-contracting and ε-revealing shielding functions, where the δ-
contraction describes the robsutness against noise in the biometric sensor. The
ε-revelation description the absence of any leakage of information via publicly
available templates.

The identification capacity appears to be determined by the ‘channel ca-
pacity’ of the biometric sensor, also for schemes that involve template protec-
tion. Similarly the entropy of a secret that can be derived from the biometric
measurement depends on the channel capacity of the biometric sensor.
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