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Abstract— Multi-carrier CDMA takes advantage of frequency
diversity by spreading each user symbol across multiple sub-
carriers to improve the transmission performance. However,
the performance of linear detection schemes is affected by
the residual inter-symbol interference (ISI) and the correlated
noise present in decision variables. In order to improve the
performance, a decision feedback equalization (DFE) scheme is
proposed in this paper. In the feedback stage, an optimal Wiener
filter is designed to predict and suppress the residual ISI and
the correlated noise caused by the channel equalization and code
despreading in the feedforward stage. Simulations show that the
proposed DFE scheme significantly outperforms the conventional
linear minimum mean-square error (MMSE) receiver. By this
scheme, a noise penalty between MC-CDMA and ideally coded
OFDM is largely reduced.

I. INTRODUCTION

The modulation method of multi-carrier code division multi-

ple access (MC-CDMA) based on the orthogonal frequency di-

vision multiplexing (OFDM) technique is interesting for low-

complexity and high-data-rate transmission in wireless local

area networks [1], [2]. Basically, the user symbols are spread

over multiple subcarriers with the aid of spreading codes, such

as the Walsh-Hadamard code that will be considered in this

paper, prior to the inverse fast Fourier transform (IFFT). By

spreading the symbols across the whole spectrum, MC-CDMA

takes advantage of frequency diversity and is thus robust to

frequency selectivity in multipath dispersive environments.

In conventional MC-CDMA, linear receiver schemes have

been applied for signal detection in the receiver, where various

strategies are considered for designing the equalization matrix

in the receiver [2]–[5]. Among these, the linear receiver

scheme based on minimum-mean-square error (MMSE) cri-

terion outperforms those based on maximum ratio combining

(MRC) and zero-forcing (ZF) [4], [6]. The MMSE scheme

compromises the noise enhancement and symbol distortion,

and eventually achieves the best performance among these

schemes. However, the linear MMSE equalization and the

consecutive code despreading in MC-CDMA lead to residual

inter-symbol interferences (ISI) and correlated noises in deci-

sion variables, which degrades the system performance. This

results in channel capacity loss, compared with ideally coded

OFDM as noticed in [2]. This current paper will show that

this penalty vanishes if the noise correlation is removed.

In order to suppress such residual ISI and the correlated

noise, we propose a decision feedback equalizer (DFE) in

this paper. The concept of DFE has been applied in many

applications, such as in single-carrier transmission and OFDM

[7]–[9], but this is to our knowledge the first time to use DFE

in MC-CDMA. In the proposed scheme, a one-tap frequency

domain equalizer is realized in the feedforward stage and

a Wiener prediction filter is designed in the feedback stage

to estimate the residual ISI and the correlated noise. The

feedback stage is realized in the code domain, which is after

the code despreading. As will be seen, this scheme provides

a significant performance improvement, compared with the

linear MMSE detection scheme.

II. SYSTEM MODEL

In this section, we describe a baseband equivalent MC-

CDMA system. Here we address the synchronous downlink for

one user using the whole spreading code matrix. In the trans-

mitter, user symbols are packed into data blocks with length N
and each block is linearly transformed by a Walsh-Hadamard

code matrix before an IFFT operation. For convenience, we

only consider one block denoted as x = [x0, x1, · · · , xN−1]
T ,

where each data symbol is independent from others and has

the energy Es, i.e. E{xxH} = EsI . After Walsh-Hadamard

transform (WHT) and IFFT, the resulting signal block is

written as

u = F HCx, (1)

with u = [u0, u1, · · · , uN−1]
T , where H denotes the complex

transpose, F is the N × N matrix performing FFT operation

and C is a Walsh-Hadamard code matrix performing WHT

operation. The code matrix is built with the elements

Cm,n =
1√
N

N−1∏

i=0

(−1)mini , (2)

where m =
∑N−1

i=0 mi2
i, n =

∑N−1
i=0 ni2

i and mi, ni ∈
{0, 1} are the binary representations of m and n, respectively.

Both F and C are unitary matrices satisfying FF H = I and

CCH = I , respectively, where I is an identity matrix. This

suggests that the matrices F H and CH perform IFFT and

inverse WHT (IWHT) operations, respectively.
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Next to the IFFT, a cyclic prefix is inserted in the front of the

signal block and then the signal block is transmitted in a time

invariant multipath dispersive channel with the channel length

L + 1. Without loss of generality, we assume that the length

of the cyclic prefix is always larger than the channel length.

In this way, the inter-block interference can be completely

resolved by the cyclic prefix.

In the receiver, we assume that the time and frequency

synchronizations of the signal are perfect and that the cyclic

prefix is removed. Then the received signal block before FFT is

r = [r0, r1, · · · , rN−1]
T , in which the entries are the circular

convolution of the transmitted signal and the channel impulse

response contaminated by the noise, i.e.

rn =

L∑

l=0

hlu(n−l)mod N + vt,n. (3)

Here {hl} are the taps of the channel impulse response and

{vt,n} are independently and identically distributed (i.i.d.)
zero mean additive white Gaussian noise (AWGN) with vari-

ance N0. For a Rician fading channel, the first tap h0 is

fixed and other taps are i.i.d. complex Gaussian distributed.

Rewriting (3) into the vector form leads to

r = cir{h}u + vt, (4)

where the noise vt = [vt,0, vt,1, · · · , vt,N−1]
T and the channel

matrix cir{h} is an N × N circulant matrix with the first

column h = [h0, h1, · · · , hL, 0, · · · , 0]T .

The received signal after FFT may be written as

y = HCx + v, (5)

where y = [y0, y1, · · · , yN−1]
T , the noise in frequency do-

main is v = Fvt and the channel matrix in frequency domain

H = F cir{h}F H . Notice that the noise v in frequency

domain is i.i.d. and follows the same nature as vt. Since

the channel considered in this paper is time invariant, the

matrix H is diagonal and the nthe diagonal element, Hn =
∑N−1

k=0 hke−j2πkn/N , represents the complex attenuation of

the channel at the nth subcarrier. The signal at each subcarrier

is equalized to remove the effect of the channel and the

equalized signal is then transformed by inverse WHT so that

the user symbols can be detected.

III. CONVENTIONAL MMSE DETECTION

A conventional MMSE equalizer can be applied in the

receiver to equalize the signal attenuation at each subcarrier

prior to code despreading. In detail, the signal vector y is

weighed by a weight matrix W prior to the code despreading.

Since the considered channel is time invariant, the MMSE

weight matrix is a diagonal matrix with the nth diagonal

element Wn =
H∗

n

|Hn|2+N0/Es
, where the channel attenuation

Hn is known in the receiver. By minimizing the mean-square

error between the equalized signal and the desired signal, the

MMSE equalizer compromises the noise enhancement and the

symbol distortion. The resulting equalized signal after code

despreading, s = [s0, s1, · · · , sN−1]
T , consists of the desired

signal x and the error signal e = [e0, e1, · · · , eN−1]
T , i.e.

s = x + CH(WH − I)Cx + CHWv
︸ ︷︷ ︸

e

, (6)

which are then fed into a detection device for the recovery of

user symbols. The error signal e consists of the residual ISI

CH(WH − I)Cx, and the correlated noise CHWv. The

error signal occurs because the signal and noise components at

different subcarriers are combined into each decision variable

by the code despreading operation, which affects the detection

performance and eventually results in channel capacity loss,

as discussed in [2].

IV. DFE DESIGN

A. The proposed DFE structure

To suppress the residual ISI and correlated noise in (6), we

adopt a decision feedback structure shown in Fig.1, where the

DFE consists of a feedforward equalizer (FFE) in frequency

domain and a feedback equalizer (FBE) after code despread-

ing. In the feedforward stage, the FFE matrix W equalizes

the complex channel attenuation at each subcarrier. In the

feedback stage, the FBE matrix D is used to estimate the

residual ISI (if there is) and the correlated noise, which is

then removed from the equalized signal after code spreading.

The FBE unit is excited by the sequence ẽ = s − x̂,

where x̂ are the recovered symbols in the feedforward stage.

When the symbols are perfectly recovered, i.e. x̂ = x, the

sequence ẽ is the same as the error signal in (6). The output

sequences of the FBE unit are the estimated error sequence

ê = [ê0, ê1, · · · , êN−1]
T based on the observation of ẽ,

according to ê = Dẽ. With the estimated error removed,

a cleaner decision variable, z = [z0, z1, · · · , zN−1]
T , is

obtained and given by

z = s − ê. (7)

It is noteworthy to point out that the DFE structure in Fig.1

is equivalent to the predictive DFE proposed in [10], where

both the feedforward and feedback stages are implemented in

time domain. The DFE structure has been applied successfully

in literature to combat ISI and correlated noise [10]–[12]. A

recent application is in single carrier block systems [8], where

the DFE is used to suppress the residual ISI and correlated

noise caused by the inverse FFT of the equalized signal that

is similar to the problem here. As will be shown later, the

advantage of this type of DFE structure is that adjusting

the number of taps in the feedback stage will not affect the

weight matrix in the feedforward stage, in contrast to the

decision directed DFE. This motivates the adoption of the DFE

structure in this paper.

B. MMSE-DFE Equalizer design

Now we concentrate on the equalizer design for the receiver

structure in Fig.1. The input signal of the decision device is
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Fig. 1. MC-CDMA transmitter and the proposed DFE receiver structure.

z = s − Dẽ = (I − D)s + Dx̂ and the error vector of the

input signal is given by

ǫ = z − x = (I − D)(s − x), (8)

where the feedback symbols have been assumed to be always

correct, i.e. x̂ = x. Then the autocorrelation matrix will be

E{ǫǫH} = (I − D)E{(s − x)(s − x)H}(I − D)H

= Es(I − D)CH

·(WTW H − WH − HHW H + I)

·C(I − D)H , (9)

where the matrix

T = HHH +
N0

Es
I. (10)

Now the coefficients of the feedforward and feedback equal-

izers can be derived by minimizing the mean squared error

(MSE), which is the trace of (9).

First, by setting the derivative of the trace of (9), with

respect to the equalization matrix W , to be zero, we obtain

the optimal MMSE weight

W opt = HHT−1. (11)

Note that for the time invariant channel, the solution (11) is

exactly the same as the conventional one-tap MMSE equalizer

given in Section III. Substituting (11) back to (9), we have the

autocorrelation matrix

E{ǫǫH} = (I − D)CHQC(I − D)H , (12)

where Q = I −HHT−1H is a diagonal matrix with the nth

diagonal element Qn = N0/Es

|Hn|2+N0/Es

.

Next is to derive the optimal FBE matrix D. If there is

no restriction is imposed on the equalization matrix D, the

solution to minimize the trace of (12), with respect to D, is

the identical matrix Dopt = I . Then, the input to the decision

device are the recovered symbols in the feedback stage, i.e.,

z = x̂. This means that, from the point of view of information

theory, the intrinsic information is fed back via the non-zero

diagonal elements of D, which results in no performance

improvement at all. Therefore, similar to the strategy of turbo

decoding [13], only extrinsic information should be used to

gain the improvement by restricting the diagonal elements of

D to be zero. By doing so, the estimation of the residual

ISI and the correlated noise merely turns into a prediction

problem.

For perfectly recovered symbols in the feedforward stage,

the output signal of the FBE unit is ê = De. With the diagonal

elements of D restricted to be zeros, the nth entry of ê, ên,

is the prediction of en given by

ên =

N−1∑

k=0

k 6=n

Dn,kek (13)

for 0 ≤ n ≤ N−1. It is clear that the predicted signal is a lin-

early weighted combination of the other error signals. Notice

that the error sequence {ek} should be replaced in practice by

the observed sequence {ẽk}, since {ek} are unknown. Here

Dn,k is the (n, k)th entry of the N × N feedback matrix D

with zero diagonals. The optimal Wiener filter taps Dn,k can

be attained by minimizing the MSE between ên and en, which

is equivalent to minimize the trace of (12). According to the

orthogonality principle for Wiener filter design, we have

E{ene∗m} = E{êne∗m}, (m 6= n) (14)

for m, n ∈ [0, N−1]. From (14), the optimal Wiener filter taps

{Dn,k} for predicting the nth error signal en can be solved.

The next step is to derive the explicit expression of (14).

Note that the left and right sides of (14) are the (n, m)th
entries of the auto- and cross-correlation matrix, E{eeH}
and E{êeH}, respectively. Combining (6), (11), e =
s − x and ê = De, we have the autocorrelation ma-

trix E{eeH} = CHQC and the cross-correlation matrix

E{êeH} = DCHQC. The (n, m)th entries of the auto- and

cross-correlation matrix can be derived

E{ene∗m} =
1√
N

qn⊕m, (15)

E{êne∗m} =
1√
N

N−1∑

k=0

Dn,kqk⊕m, (16)

respectively, where ⊕ denotes the modulo-2 addition. Modulo-

2 addition is performed using an “exclusive OR (XOR)”

operation on the corresponding binary digits of each operand1

1Modulo-2 addition is both a commutative and an associative operation,
i.e.,

commutativity: m ⊕ n = n ⊕ m (17)

associativity: (m ⊕ n) ⊕ s = m ⊕ (n ⊕ s) = m ⊕ n ⊕ s (18)
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[14]. Here the sequence {qk} is related to the sequence of

{Qk}, which are the diagonal elements of the diagonal matrix

Q, by qk =
∑N−1

k′=0 Ck,k′Qk for k = 0, 1, · · · , N − 1.

Substituting (15) and (16) into (14) and using the associative

and commutative properties of modulo-2 addition, we have

N−1∑

m′⊕n=1

qm⊕m′Dn,m′⊕n = qm (m, m′ 6= 0), (19)

which can be further simplified as

N−1∑

m′=1

qm⊕m′Dn,m′⊕n = qm (m 6= 0). (20)

When the (N−1) equations composed by (20) is non-singular,

the solution of the (N − 1) taps, {Dn,m′⊕n}, is unique for

a certain n. The equation (20) also reveals that the set of the

(N−1) values {Dn,m′⊕n} with m′ = 1, · · · , N−1 is the same

for any n. Denoting Dn,m′⊕n = dm′ , the Wiener prediction

(13) can be reformulated by

ên =

N−1∑

m′=1

dm′en⊕m′ , (21)

where the optimal Wiener taps {dm′} can be solved from

N−1∑

m′=1

qm⊕m′dm′ = qm (22)

for m ∈ [1, N − 1]. Note that the optimal Wiener prediction

in (21) is conducted by a dyadic convolution, instead of a

linear convolution as applied in conventional predictions. This

filter structure arises because of the mechanism of causing the

residual ISI and the correlated noise in (6).

C. Wiener filter with reduced order

Finding the coefficients dm′ from (22) is equivalent to solve

the linear system of N−1 equations, which requires a complex

computation for a large value of N . In order to reduce the

complexity, the filter can be redesigned starting from (21)

by reducing the number of taps. To do so, the ideal way

is to retain only the B most significant taps and neglect the

others. However, currently there is no straightforward way to

immediately sort out the significance in practice. Considering

the structure of the feedback matrix, the most convenient way

is to restrict {dm′} to be zero for m′ > B. Then the resulting

estimate of the nth entry of ê is written as

ên =

B∑

m′=1

dm′en⊕m′ , (23)

where {dm′} can be obtained by solving the B equations

B∑

m′=1

qm⊕m′dm′ = qm (24)

for non-negative integers m, n, s. Another important property of modulo-2
addition is that if m ⊕ n = s, then m = n ⊕ s is valid.
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Fig. 2. The estimated feedback coefficients for a typical radio channel.

for m ∈ [1, B].
Now we examine the significance of the selected B taps,

which determines how accurate is the estimation of the error

signal in decision variables and eventually the system per-

formance. A lot of computer simulations indicate that the

magnitudes of FBE coefficients {dm} are in a decreasing trend

for an exponential decaying radio channel. For instance, Fig.2

depicts the magnitudes of the estimated feedback coefficients

for a typical radio channel, where the FBE filter is in full

length, i.e. B = N − 1 = 511, and the perfect decisions are

used for the estimation. Here, the first 50 taps falls into the

group of the most significant coefficients. Therefore, using a

limited number of taps according to (23) might give a sufficient

performance, as shown by simulations in Section V, with a

fairly acceptable complexity.

In addition, it is seen from (11) and (24) that the opti-

mal coefficients of FFE are not dependent on the feedback

coefficients. This indicates that the number change of the

feedback taps will not affect the FFE unit, in contrast to the

decision-directed DFE. This provides flexibility and adaptivity

to practical systems.

V. SIMULATION RESULTS

In this section, baseband equivalent simulations are con-

ducted to evaluate the performance of the proposed DFE

for synchronous MC-CDMA systems. A Rician channel is

simulated with the first tap fixed and other taps following

Rayleigh fading distributions whose variances are exponen-

tially decaying. The Rician K-factor, the root-mean-squared

delay spread and the maximum excess delay are 1, 7.5 ns

and 75 ns, respectively. The channel parameters are consistent

with the measured LOS indoor channels configured with

omnidirectional antennas in the frequency band of 60 GHz

[15]. The simulated bandwidth is 1.75 GHz and the data block

length is 512. Here the cyclic prefix is set to be 1/4 of the

symbol duration, which is large enough to absorb the ISI

between data blocks. The channel is perfectly known in the

receiver and the received signal is perfectly synchronized in

time and frequency.
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Fig. 3. Average uncoded BER performance with perfect feedback.

A. Uncoded performance with ideal feedback

Fig.3 depicts the average uncoded BER performance for

16-QAM with Gray bit-mapping as a function of the carrier-

to-noise ratio in terms of Es/N0 (energy per symbol over

the noise density). To explore the performance limit, the ideal

feedback is applied to predict the signal error. As a reference,

the BER performance of the conventional OFDM and MMSE-

based MC-CDMA is also shown. From this figure, one can see

that the proposed DFE scheme provides visible performance

gains at practical SNR (Es/N0 > 10 dB) relative to the

conventional MMSE-based MC-CDMA. For a small tap order

(B = 3), the proposed DFE scheme has the advantage of

about 0.4 dB gain, at the target BER 1 × 10−3, compared

with the MMSE-based MC-CDMA. Raising the tap order

leads to larger improvements. For instance, the proposed DFE

scheme has about 1.1 and 1.9 dB gains for B = 15 and 63,

respectively. It is also shown that for the tap order B > 63, the

gain margin becomes limited, which can be explained by the

fact that the feedback coefficients for B > 63 have negligible

values, as observed from Fig.2. For the full order DFE with

B = 511, the gain is about 2.1 dB.

VI. CONCLUSIONS

In this paper, a predictive DFE structure was used and

the optimal MMSE-DFE equalizer was designed for the MC-

CDMA signal detection. While the feedforward stage was

equivalent to the MMSE equalizer in the conventional MC-

CDMA, a Wiener filter was designed in the feedback stage to

suppress the residual ISI and correlated noise caused by the

channel equalization and code despreading in the feedforward

stage. Simulations showed that the proposed DFE scheme

achieves a significant performance improvement, up to 2.1

dB gain, over the conventional MMSE-based MC-CDMA

detection. This largely removes the SNR penalty between MC-

CDMA and ideally coded OFDM observed in [2].
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