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Abstract—Wireless LANs increasingly experience interference
from other users operating in the same frequency band. In
this paper, the aim is to develop techniques to learn from
the interference environment in order to find the best strategy
for radio transmissions. An analytical model is proposed to
characterize the radio environment around a particular node.
A compensated estimator is derived for the activity of nodes.
Simulations show that the proposed estimators are reasonably
accurate, particularly for high capture thresholds.

I. I NTRODUCTION

Wireless networks are in wide use today, and it is likely
that in the future more and more radio devices will have to
coexist in the same frequency band. This makes the efficient
use of the available spectrum by many users a technical chal-
lenge. For devices that operate in the same network, various
medium access control (MAC) schemes have been developed
to coordinate their transmissions. However, the prevention of
interference from conflicting simultaneous transmissionsin
different networks appears to be more difficult. The term Cog-
nitive Radio [1] has been adopted for communication systems
in which devices individually learn about their interference
environment by sensing the channel and opportunistically use
the radio resources, but treat the spectrum in an ecologically
responsible manner according to prescribed rules.
To learn about the wireless environment, cognitive radios
observe radio transmissions of other nodes, even when these
nodes are not cooperative. The activity of a node and its local-
mean received power are of interest, since these quantities
are a measure for their interference on other transmissions.
An estimator for the local-mean received power from a node
can be biased for several reasons. First of all, packets can
collide due to simultaneous transmissions of multiple nodes. In
these cases, particulary the weaker packets are lost. Secondly,
channel conditions fluctuate over time. Both effects can lead
to an underestimated activity per node and an overestimated
local-mean received power per node.
This paper aims at proposing a better, i.e. compensated,
estimation method for the transmission probability. We also
investigate whether one can rely on the measured incoming
power during a capture event as a reasonable estimate of the
local-mean power of a specific node.

II. SYSTEM MODEL

Throughout this paper we will consider a randomly arriving
packet traffic, similar to assumptions used to study slotted

ALOHA, although we do not necessarily assume that all
packets have a common destination. A packet is send at
the beginning of a time slot and consecutive packets do not
overlap. Furthermore, we assume that all packets are equal to
the slot length. We consider an observing nodei separated
from a source nodes by a distance ofDs. This pair is being
surrounded byN other possible interfering nodes, each node
is indexed asn = {1 . . . N}. Radio signals propagate by
means of reflection, diffraction, and scattering, which result
in three effects a radio signal experiences: attenuation, large-
scale shadowing, and small-scale fading. For our simulations,
we do not consider shadowing. Signal attenuation is mainly
based on the location of both source and destination node. The
local-mean received power at nodei from the source, is linked
to the signal attenuation by

P̄s = PtxD−α
s , (1)

whereα is the pathloss exponent. We do no need to introduce
this pathloss in a real-time environment, but for our simula-
tions it is essential.
Small scale fading of a signal is caused by multiple received
versions of a transmitted signal with different delay timessuch
that the signal has both time and location varying properties.
In our model, the instantaneous received power from a nodes,
Ps, is exponentially distributed around its local-meanP̄s. We
acknowledge that Rayleigh fading is not always an accurate
model, particulary not for line of sight communications. How-
ever, due to the nice mathematical properties of its exponential
distribution we use this model in this paper.
If the instantaneous received power for a specific message
exceeds the total power of all other received messages by at
least a certain threshold, we model the message to be decoded
correctly. We call this the thresholdz. Thus, a capture event
Cs from source nodes by the observing nodei occurs when
[2]:

SINR =
Ps

PN0
+

∑N

n=1 Pn

> z. (2)

Here, PN0
is the noise power andPn is the instantaneous

received interference power from noden.

III. C APTURE PROBABILITY

Given the local-mean received power from nodes, the
capture probability for a transmitted packet can be determined
from:

Pr(Cs|P̄s) = Pr

(
Ps

Pt

> z|P̄s

)
. (3)
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Here,Pt is the total received interference power, which equals
the noise power plus the received power from all interfering
nodes. Assuming Rayleigh fading channels, it was shown in
[3] that this conditional capture probability can be expressed
as:

Pr(Cs|P̄s) =

∫ ∞

0

exp

{
−

wz

P̄s

}
fpt

(w) dw. (4)

Since the Laplace transform of a functionx is defined by

Lx(s) ,

∫ ∞

0

x(t) exp {(−ts)}dt, (5)

and by using 4 and 5 the conditional capture probability
can now be expressed as a multiplication of the Laplace
transforms of all Probability Density Functions (PDFs) of all
the interfering links individually, namely:

Pr(Cs|N, P̄s) =
N∏

n=1

L

{
fpn

,
z

P̄s

}
. (6)

The probability that a noden transmits in an arbitrary time
slot is Pr(Tn). We assume that this probability is stationary
over all slots, at least during the observation period, and
independent for different nodes. The received power is zero
when the node does not transmit. So, the Laplace transform
of the received power PDF of noden at the observing nodei
in a point z

P̄s

is:

L{fpn
,

z

P̄s

} = 1 − Pr(Tn) +
1

1 + z
P̄s

P̄n

Pr(Tn). (7)

IV. ESTIMATORS FOR INTERFERENCE

To estimate the transmission probability of nodes, we
initially count the number of slots in which a packet from
nodes captures the observation nodei and divide it by the
total number of observation slots. This approach of estimating
the activity of nodes is biased since we can only count the
number of packets that are recovered. Packets lost, due to
collisions or channel conditions, are not taken into account.
Note that the transmission probability,Pr(Ts), is connected
to the capture probability with:

Pr(Cs) = Pr(Cs, Ts)

= Pr(Cs|Ts)Pr(Ts). (8)

A reliable estimate forPr(Cs|Ts) is needed if we desire an
accurate estimate forPr(Ts). Using Eqn. 6 and 7 we get:

Pr(Cs|Ts) =
Lpt

( z
p̄s

)

Lps
( z

p̄s

)

=
Lpt

( z
p̄s

)

1 − z
1+z

Pr(Ts)
. (9)

Finally, substituting Eqn 9 into Eqn 8 and rearranging the
expression to solve for the transmission probability, we get:

Pr(Ts) =
Pr(Cs)

Lpt
( z

p̄s

) + Pr(Cs)
z

1+z

. (10)

The transmission probability of a certain node can be deter-
mined using 10. We assume thatz is known, since it is merely
a function of the chosen data-rate. Therefore, we need real-
time estimations for:Lpt

( z
p̄s

) and the scalarsPr(Ci), p̄s.

A. Estimate of Lpt
( z

p̄s

)

Several options exist for estimating the Laplace transform
Lpt

( z
p̄s

). As proposed for the IEEE 802.11k [4] standard, we
could use a histogram for the received power to derive an
estimate for the PDF ofpt and the corresponding Laplace
transform.

Another option is to use an approach which includes
the Law of Large Numbers (LLN) [5]. The idea is that we do
not need to know the complete function but only the function
evaluated at a certain point. Denoting the total received power
in a slot aspt[m], m = 1, 2, · · · ,M . then we get:

Lpt

(
z

pj

)
= E

[
exp

{
−

z

p̄s

pt[m]

}]

≈
1

M

M∑

m=1

exp

{
−

z

p̄s

pt[m]

}
. (11)

B. Estimate of the Capture Probability Pr(Cs)

Let us first prove that the Maximum Likelihood (ML)
estimator for the capture probability is equal to the numberof
captured messages (u) divided by the total number of observed
slots (v).

P̂r(Cs) , arg max
Pr(Cs)

Pr(u|Pr(Cs))

= arg max
Pr(Cs)

log Pr(u|Pr(Cs))

= arg max
Pr(Cs)

{
log

( v

u

)
+ u log(Pr(Cs)) +

(v − u) log(1 − Pr(Cs)
}
. (12)

The first step in these equations is the definition of a ML
estimator. The logarithm is introduced so that the binomial
distribution in the third step can be expressed as a sum.
The maximum of the final expression is found at̂Pr(Cs) = u

v
.

C. Estimate of p̄s

We propose to use the total received power as input for the
local-mean power of nodes, given that a packet from nodes
is captured correctly:

p̄t|cs
= E[pt|Cs]

=

∫ ∞

0

ptfpt
(pt|Cs)dpt

≈ ˆ̄Ps. (13)

If we use this approach to estimate the local-mean power a bias
is present. This is because capture typically occurs when the
received signal power is high and because interference power
is included in the received signal. However, the impact due to
the second contribution appears to be low if the threshold is
sufficiently large:

ˆ̄Ps ≈

∫ ∞

Pmin

PsfPs
(Ps)dPs∫ ∞

Pmin

fPs
(Ps)dPs

≈ Pmin + P̄s. (14)
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For our simulations we added both estimation methods for
Pr(Ts):

q1 ,
1

M

M∑

m=1

I{Cs(m)} (15)

q2 ,
q1(

1
M

∑M

m=1 exp
{
− z

p̄s

pt[m]
}

+ q1
z

1+z

) , (16)

whereI{Cs(m)} is the event of capture by nodes in slot m.

V. SIMULATIONS

The network scenarios and the results are depicted in
Figures 1-6. We used the Law of Large Numbers to estimate
the Laplace transform in a single point (Lpt

( z
p̄s

)). The first
figure illustrates a scenario with relatively low traffic. All
interfering nodes transmit with probability 0.1. The observing
node estimates the transmission probability of nodes and its
local-mean received power.
In the second scenario the wireless environment is more
hostile. The interfering nodes transmit with probability 0.6 in
every time slot. In both scenarios we added the biased as well
as the compensated estimator for the transmission probability.
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Fig. 1. Low interference probability
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Fig. 2. Low interference probability: Estimator for the Local-mean power
received from source nodes, z = 12, Pr(Ts) = 0.2
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Fig. 3. Low interference probability: Estimator for the transmission proba-
bility of source nodes, z = 12, Pr(Ts) = 0.2
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Fig. 4. High interference probability

0 0.5 1 1.5 2

x 10
4

10
0

10
1

10
2

Packet index

Lo
ca

l−
m

ea
n 

P
ow

er
 (

W
)

 

 
Estimator local−mean power
Exact local−mean power

Fig. 5. High interference probability: Estimator for the Local-mean power
received from source nodes, z = 12, Pr(Ts) = 0.2

VI. CONCLUSIONS

By measuring channel traffic and performing a compensated
algorithm we can estimate the average activity of a node.
Although a bias is present, simulations show that the proposed
estimator for the local-mean power is reasonable accurate,at
least for high capture thresholds. The results are less accurate
for low capture thresholds and/or very high interference.
Results show that even for situations when only 10% of the
traffic for a certain node is observed, we can still estimate its
average activity fairly accurately.
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Fig. 6. High interference probability: Estimator for the transmission
probability of source nodes, z = 12, Pr(Ts) = 0.2
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