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Abstract. We propose a new scheme for reliable authentication of physical
objects. The scheme allows not only the combination of noisy data with cryp-
tographic functions but has the additional property that the stored reference
information is non-revealing. By breaking into the database and retrieving the
stored data, the attacker will not be able to obtain any realistic approxima-
tion of the original physical object. This technique has applications in secure
storage of biometric templates in databases and in authentication of PUFs
(Physical Uncloneable Functions).

1. Introduction

Many cryptographic protocols are based on encryption algorithms and one-way
functions. One of the fundamental properties of those functions is that they are
very sensitive to small perturbations in their inputs. Therefore, those cryptographic
primitives can not be applied straightforwardly when the input data are noisy. This
is typically the case when the input data is obtained from the measurement of physi-
cal objects such as biometrics [10], PUFs (Physical Uncloneable Functions) [5], [12]
etc. Consequently, some additional processing has to be performed in order to
remove the noise, while not compromising security.

It is clear that in order to perform the verification procedure of biometric tem-
plates, some reference information has to be stored at a central server at work, in
the bank, or in the supermarket. However as biometrics are unique identifiers of
human beings, a privacy problem arises. People feel uncomfortable with supplying
their biometric information to a large number of seemingly secure databases for
various reasons. The above arguments imply that a successful protocol has to sat-
isfy the following requirements i) Robustness to noise, ii) Security and iii) Privacy
protection.

More specifically, by privacy we mean, that by breaking into a database, an
attacker will not learn anything about the biometric template (or the physical
structure of the PUF).

We prove that a universal authentication scheme satisfying the above-mentioned
requirements i), ii) and iii) does not exist. Hence, the authentication scheme has to
be based on features which are selected individually, i.e. on side-information. In this
paper, we propose such an authentication method, based on statistical selection of
robust features adapted to the given template while preserving privacy. We evaluate
the performance of our scheme with respect to requirements i), ii) and iii) in case
of Gaussian data with Gaussian noise.
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There is a large body of literature on the various aspects of biometric identi-
fication, and corresponding cryptographic problems [1, 3, 4, 8, 9]. Those papers
propose a scheme based on error-correcting codes and one-way functions. We em-
phasise that our proposal does not rely on error-correcting codes but is based on
a robust way of feature extraction. The method is set-up in such a way that an
honest user is correctly authenticated with high probability. Furthermore, given
the public information in the database, it is very hard to derive any information
about the biometric template.

This paper is organised as follows. In Section 2, we describe the model on which
the remaining part of the paper is based. A general capacity bound for this problem
setting is derived in Section 3. Finally, we give a detailed description of our solution
in the case of Gaussian data with Gaussian noise, in Section 4.

2. The Model

In this section, we describe the model that we have in mind. We distinguish two
phases: An Enrolment phase and an Authentication/ Verification phase which are
described in detail below.

First, Alice goes with her biometric through an enrolment phase at a certification
authority (CA). During this procedure the properties of her biometric are measured
with specialised equipment. From the measurement data a secret S is derived. The
reference data stored in the database is obtained by applying a (possibly) one-way
function h to S. When Alice wants to authenticate herself to Bob at a later point
in time, a measurement that extracts analog data Y of her biometric is taken. She
asks Bob for the corresponding helper data W which is communicated to her by
Bob. These measurement data are then processed together with the helper data
W by means of a signal processing function G to construct a secret S′. Finally,
h(S′) is computed and compared to the stored data h(S) in the database. In order
to set up a secure system, the function G has to be robust to noise, versatile and
information hiding. The precise meaning of these notions is defined below.

Definition 2.1. Let G : Rn+m → {0, 1}k be a function and ε ≥ 0. The function
G is called ε-robust to noise if and only if for all X ∈ Rn there exists a vector
W ∈ Rm such that P(G(X+N,W ) 6= G(X,W )) ≤ ε, where P denotes the probability
according to the distribution of the noise N .

Definition 2.2. Let G : Rn+m → {0, 1}k be a function. The function G is called
versatile if and only if for all S ∈ {0, 1}k and all X ∈ Rn, there exists a vector
W ∈ Rm such that G(X,W ) = S.

Definition 2.3. A two-party protocol generating a secret S is called ε-revealing if
and only if the communicated helper data W satisfies I(W ;S) ≤ ε.

We stress that in order to have a robust, versatile signal processing function
G = G(X, W ), W must depend on X, i.e. each participant gets its own specific
helper data. This was first observed in [10] under stronger robustness conditions.
Here, we state a more general version of this theorem.

Theorem 2.1. Assume that the noise has a continuous density on Rn. Then every
ε-robust function G = G(X), with ε < 1/2, is constant.
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Figure 1. Schematic presentation of an authentication protocol

3. Capacity

In this Section, we derive a bound on the entropy of a secret S generated from
noisy data X (taken during enrolment) and Y (taken during measurement) when
additional side information W is communicated between both parties. It follows
from the model in Section 2, that the constraints of the system are given by:

(1) H(S|X,W ) = 0, H(S′|Y, W ) = 0, I(S; W ) ≤ δ, P(S 6= S′) ≤ ε,

where S = G(X, W ) and S′ = G(Y,W ). Using standard entropy arguments, and
Fano’s inequality we obtain the following result 1.

Theorem 3.1. Let S be a binary string derived from X and Y by communicating
W as described in Eq. 1 then,

(2) H(S) ≤ I(S; W )+I(X;Y |W )+H(S|S′) ≤ δ+I(X; Y |W )+h(ε)+ε(log2(|S|)−1)

where h is the binary entropy function.

It is clear that the requirement that W gives little information about S, also
implies that W gives little information about X.

The previous theorem implies that when I(S; W ) ≤ δ, one can only get sufficient
entropy in S if I(X;Y |W ) is large, i.e. if given the helper data W , Y gives much
information about X.

By taking the supremum over all input probability distributions for X, the bound
becomes,

(3) H(S) ≤ I(S;W ) + CXY + H(S|S′).
where CXY is the capacity of the ”channel” between X and Y . For a Gaussian
channel, CXY is given by log(1 + σX

σN
) [2].

4. Gaussian data and Gaussian Channels

In this section, we first give a general description of our scheme and then focus on
the special case where the physical data X and the noise N are Gaussian distributed.

4.1. Fisher’s Transformation. We assume that the measured physical data con-
sists of enrolment data corrupted by noise. More precisely, assume that Y = X+N ,
where Y = (Y1, . . . , Yn) represents the measured physical data, X = (X1, . . . , Xn)
stands for the true signal and N = (N1, . . . , Nn) represents the noise. Suppose
that X has mean m and covariance matrix ΣX , and that N has mean 0 and co-
variance matrix ΣN , which we assume to be positive definite. Let Γ∗ be a matrix,
consisting of the eigenvectors of Σ−1/2

N ΣXΣ−1/2
N , i.e. Σ−1/2

N ΣXΣ−1/2
N Γ∗ = Γ∗Λ =

1This theorem is related to the common randomness bounds of [11], though with much less
communication.
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Γ∗diag(λ1, . . . , λn). Hence, λi ≥ 0 for all i = 1, . . . , n and we may assume without
loss of generality that λ1 ≥ . . . ≥ λn ≥ 0. Next define Γ = Σ−1/2

N Γ∗. Using Γ, we
define a new vector α = (α1, . . . , αn) by αi = 〈Y −m, γi〉 where γi represents the
i-th column of Γ.

Assume that X and N have a Gaussian distribution. Then, the following is
true2.

Theorem 4.1 ([7]). If X ∼ N (m,ΣX), N ∼ N (0, ΣN ), ΣN > 0; X and N are
independent, and α is as defined above, then α ∼ N (0, Λ + I).

4.2. The Scheme. Our proposal for a secure authentication of physical objects
consists of a selection a k-bit secret based on the signs of several components with
large absolute values3. The idea is that the noise is not sufficiently large to corrupt
the signs of those significant components. This will lead to the reliability of our
approach.

Let δ be a small positive number. We will choose δ appropriately depending
on the noise level. For each i denote by pi = P(|αi| > δ), qi = 1 − pi = P(|αi| ≤
δ) = 1√

2πλi

∫ δ

−δ
e
− t2

2λi dt. Note that we have the following trivial estimate of qi,

qi ≤
√

2
πλi

δ.

Define the random variables zi, i = 1, . . . , n, as follows zi = 0 if |αi| ≤ δ and
zi = 1 if |αi| > δ. Note that zi, i = 1, . . . , n, are independent Bernoulli random
variables, with P(zi = 1) = pi, P(zi = 0) = 1− pi = qi.

In order for the authentication scheme to be versatile, one has to ensure a large
number of significant components, or in other words, the sum

∑n
i=1 zi, must be

large with a large probability. Note that its expected value is given by E(
∑n

i=1 zi) =
n−∑n

i=1 qi. It is natural to assume that there is a substantial number of components
with variance larger than cδ2, c > 1. Suppose that the fraction of such components
is at least ρ. Note that if the number of components with variance substantially
larger than δ2 is small, then the whole problem of authentication of physical objects
with such properties becomes infeasible, as the data X and Y become then decor-
related. There should be a sufficient amount of “energy” to distinguish various
measurements. If there is not enough energy in the signal, the noise will dominate.
This will make robust authentication impossible.

Using the estimate on qi’s obtained above, we conclude that

E(
n∑

i=1

zi) ≥ n−
[ρn]∑

i=1

qi −
n∑

i=[ρn]+1

qi ≥ [ρn]
(
1−

√
2
πc

)
.

Hence we can conclude that if we have a substantial fraction of components with
large variance, then the expected value of the sum we are interested in, will be at

2Fisher’s Discriminant Transformation is very similar in spirit to the Principal Component
Transformation. However, in the case the noise is coloured, i.e., the covariance matrix of the
noise is not a multiple of the identity, the Fisher discriminant transformation can provide superior
performance.

3We note here that two effects are happening: i) we take care of the error correction prop-
erties by constructing a binary symmetric channel with low error probability, ii) we generate a
secret about which an attacker has no information. This second step can be compared with a
privacy amplification step. Extensions of the construction mentioned here are investigated in a
forthcoming paper [6].
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least a large fraction of the number of such components. In other words, we do not
lose many components.

We estimate the probability of the event that the sum
∑

i zi is small, i.e. that
it is substantially smaller then the expected value. Using a classical Bernstein
inequality, one easily obtains the following result.

Theorem 4.2. Let {zi}n
i=1 be independent Bernoulli random variables. Let pi =

E(zi), κ1 =
∑n

i=1 pi/n, τ =
∑n

i=1 pi(1− pi)/n. Then for any κ2, κ2 < κ1, one has

(4) P
( n∑

i=1

zi ≤ κ2n
)
≤ 2 exp

(
− 3(κ1 − κ2)2

6τ + 2(κ1 − κ2)
n

)
.

Hence, we conclude that the probability of a substantial deviation of
∑

i zi from
its mean value, is exponentially small.

In the case, the noise has a Normal distribution N (0, σ2
NId), where Id is the

identity matrix, δ has to be chosen depending on σN . For instance, for the Fisher
discriminant Transformation, δ = 3σN or δ = 5σN will be sufficient to ensure correct
identification of one bit with probability 99.87% and 99.99997% respectively.

4.3. Versatility. Estimates of the previous subsection imply that with a large
probability the transformation will give a sufficient number of significant compo-
nents. We define the set Iδ(α) = {i = 1, . . . , n : |αi| > δ}. Our main goal is to create
a certain k-bit binary secret S = (s1, . . . , sk) ∈ {0, 1}k based on α. We say that a
secret S = (s1, . . . , sk) is feasible for α if there exist distinct indexes i1, . . . , ik such
that ij ∈ Iδ(α), for every j = 1, . . . , k, and sj = H(αij ) for every j = 1, . . . , k (H
denotes the Heaviside function). Denote by Sδ(α) ⊂ {0, 1}k the set of all feasible
secrets for α: Sδ(α) = {S ∈ {0, 1}k : S is feasible for α}. One would like Sδ(α) to
be a large as possible. Under normality assumptions, αi has a symmetric distribu-
tion. Hence if si = H(αi), then P

(
si = 1

∣∣∣ |αi| > δ
)

= P
(
si = 0

∣∣∣ |αi| > δ
)

= 1
2 .

In the previous section we showed that the expected number of significant com-
ponents is equal to a certain fraction of n, say γn. Moreover, the probability of
a large deviation from the expected number is exponentially small. Since si for
each i such that αi > δ is a symmetrically distributed Bernoulli random variable, it
follows from the theory of typical sequences that approximately one-half of si’s is
equal to one, and approximately one-half s is equal to zero. Hence, if we let k (the
length of our secret) to be a certain fraction of the expected number of significant
components, i.e. k = η1n, say η1 = γ/10. Then with a large probability, a large
portion of all 2k secrets is feasible for α.

Once we have chosen a feasible secret S, we create the helper data W = W (X)
by taking rows of Γ, with indexes ij , j = 1, . . . , k, i.e. W is a k × n matrix. There
is a close relation between the proposed scheme and universal hash functions used
for Privacy Amplification [11]. A more general theoretical framework for this and
other schemes [3, 4, 8, 9] will be presented in [6].

4.4. Information revealing. The transformation g(X, W ) is defined as g(X, W ) =
WX where W is a k × n matrix that filters out the significant components.

Theorem 4.3. The proposed scheme is 0-revealing, i.e., I(W ; S) = 0.
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