Principles of Digital Image and Video Watermarking

Ton Kalker

Philips Research Eindhoven ton.kalker@ieee.org

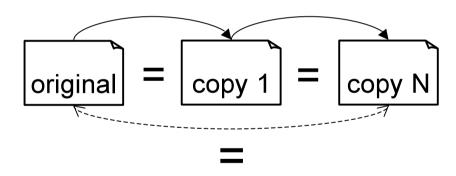
adapted from ICIP-2000 tutorial with contributions from Jonathan Su

Outline

- Introduction
- Spread-spectrum watermarking
- Attacks and robustness
- De- and re-synchronization
- JAWS & Millennium
- Millennium System Aspects

INTRODUCTION

- Motivation
- "How can information be hidden in digital data?"
- "What is the watermark?"
- Watermarking as communications
- Desired properties
- Limitations


Analog and Digital Multimedia

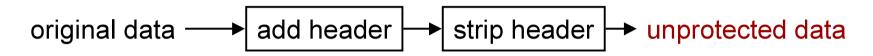
Analog Media
photocopies
audio cassettes
photographs
VHS videotapes

original ≈ copy 1 ≈ copy N

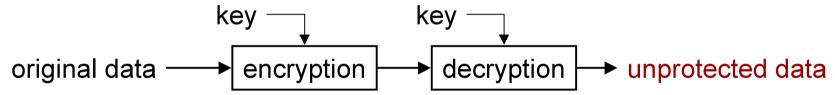
- "Built-in" protection against copying and redistribution
- Distribution net required

Digital Media
ASCII, PostScript, PDF
CDs, MP3 audio
JPEG images
DVDs, MPEG video

- No inherent protection against copying and redistribution
- "Free" distribution net: Internet


Unauthorized Use of Digital Data

Digital multimedia

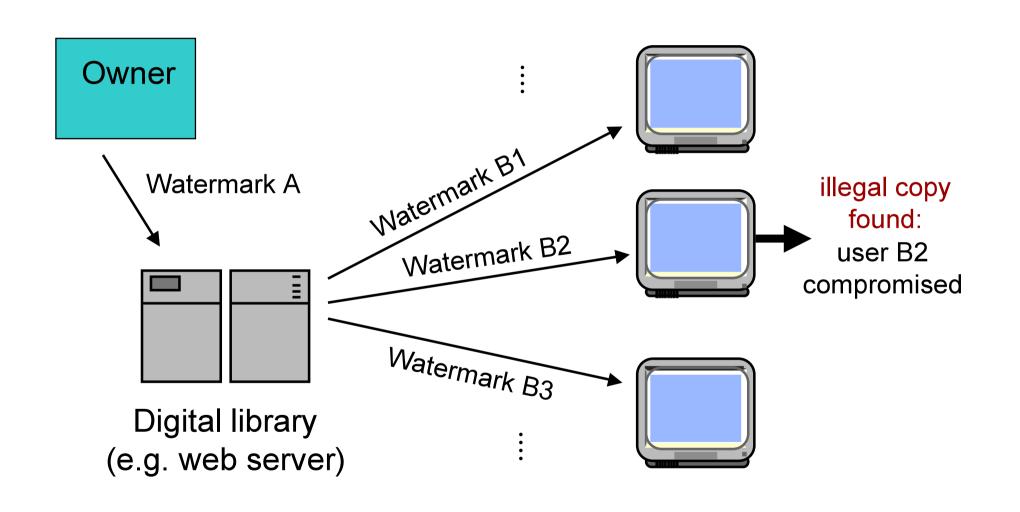

- can be stored, copied, and distributed easily, rapidly, and with no loss of fidelity
- can be manipulated and edited easily and inexpensively
- Are these properties always advantageous?
 - Some Hollywood studios will not release DVDs unless copyright protection can be ensured
 - USA Today, Jan. 2000: Estimated lost revenue from digital audio piracy: US\$8,500,000,000.00
 - Recent examples: MP3.com, Napster

Traditional Methods of Protecting Data

Access-control headers: easily removed/altered

Encryption: decrypted data unprotected

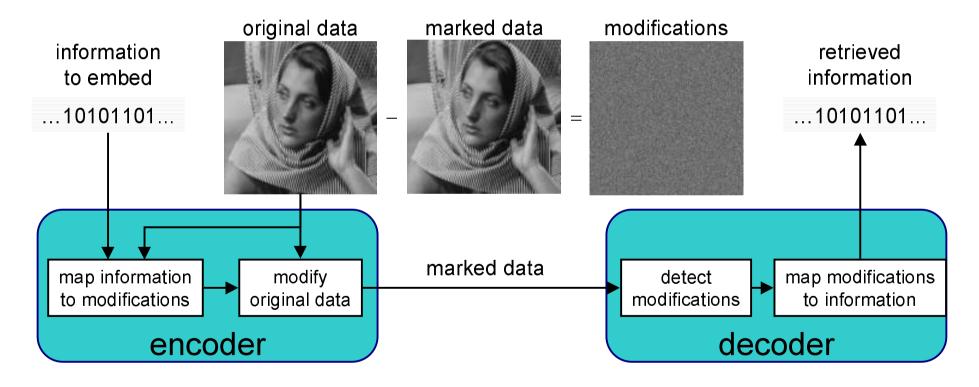
Copy protection: susceptible to hacking


Motivation for Digital Watermarking

- Imperceptibly embed information directly into original data ("host data", "cover data") to produce "watermarked data"
- Principle: Embedded information travels with the watermarked data, even after copying and redistribution

- "last line of defense"
- loosely analogous to watermarks in paper

Example: Distribution from a Library



Watermarking Applications

- Access control
 - playback, copy-generation control (DVD)
 - copyright protection, proof of ownership (?)
- Distribution tracing
 - fingerprinting
 - identification of compromised parties
- Broadcast monitoring
- Media authentication (fragile watermarking)
- Covert communication (steganography)
- Added value via meta-information
 - e.g., SmartImages by Digimarc Corp. [Alattar 2000]

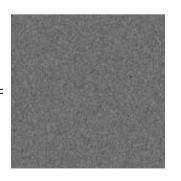
Two Basic Questions

- How can information be hidden in digital data?
- What is the watermark, actually?

"How can information be hidden in digital data?"

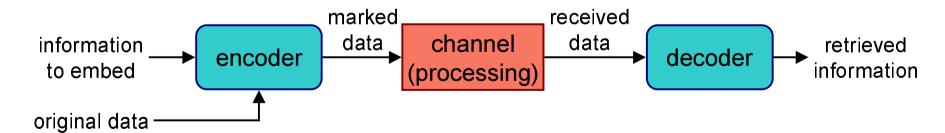
- By exploiting "perceptual headroom."
 - human perception is imperfect
 - make modifications to the original data without changing it perceptually
 - modifications can be detected via signal processing

"What is the watermark, actually?"


- No standard definition, two common viewpoints
 - "watermark-as-signal"
 - watermark = modifications to original convey information
 - applies regardless of implementation details (e.g., spatial- or frequency-domain methods)
 - "watermark-as-information"
 - watermark = information that is embedded and retrieved

<u>watermark-as-signal</u>

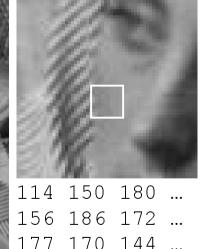
watermark-as-information



information retrieved to embed information ...10101101... → ...10101101...

"What is digital watermarking?"

- Watermarked data is likely to be processed
 - view processing as a communications channel
- Digital Watermarking: The imperceptible, robust, secure communication of information by embedding it in and retrieving it from other digital data.


Desired Properties: Imperceptibility

- Watermarked data and original data should be perceptually indistinguishable
- Use low-amplitude modifications and/or perceptual modeling

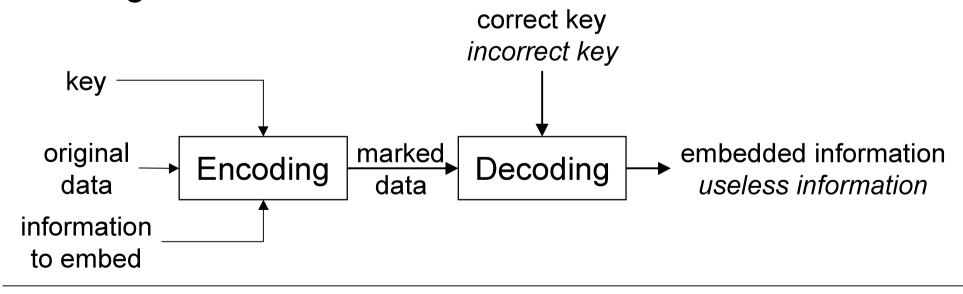
115 154 180 ... 158 183 174 ... 177 168 144 ...

Original image

After embedding

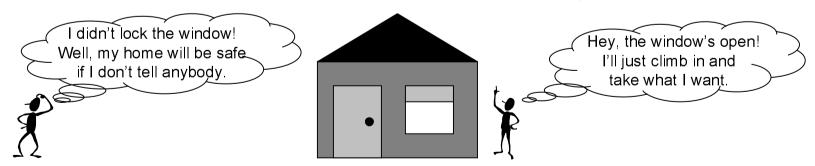
Desired Properties: Robustness

 Processing of the watermarked data cannot damage or destroy the embedded information without rendering the processed data useless



JPEG compression

Additive noise & clipping


Desired Properties: Security

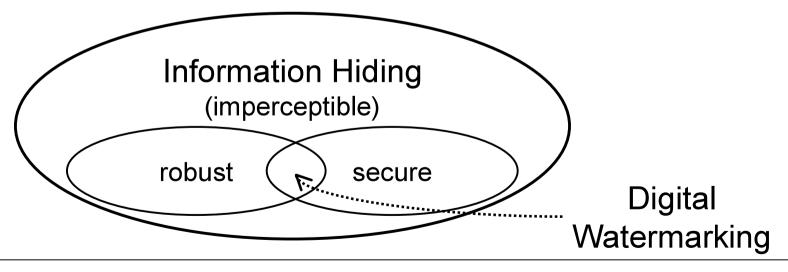
- Embedded information cannot be detected, read, and/or modified by unauthorized parties
- Kerckhoff's principle: Security resides in the secrecy of the key, <u>not</u> in the secrecy of the algorithm.

Kerckhoff's Principle

- Security resides in the secrecy of the key, <u>not</u> in the secrecy of the algorithm
- Assume your opponent has complete knowledge of your strategy but lacks a secret.
 - strategy = algorithm & implementation
 - secret = key
- Otherwise: <u>False sense of security!</u>

Additional Desired Properties

- "Blind" watermarking
 - no reference to original data during decoding
 - possible interference from original data
- Multiple watermarks
 - one copy with several information streams
 - different information in different copies
- Compressed-domain processing
 - combined watermarking and compression
 - bit-rate constraint
- Implementation concerns
 - speed, computational load, footprint, cost

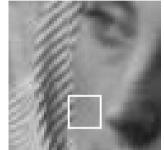

Additional Desired Properties

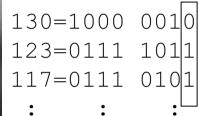
- Low False Positive Rate
 - a positive detection on non-marked content
- Low Granularity
 - minimal spatio-temporal interval for reliable embedding and detection
- Large Capacity
 - related to payload
 - #bits / sample
- Layering & Remarking Capabilities
 - watermark modification

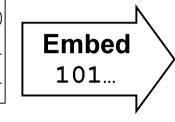
Relation to Information Hiding

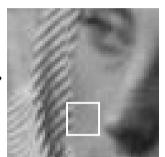
- Information Hiding (steganography)
 - The imperceptible communication of information by embedding it in and retrieving it from other digital data.
- Digital Watermarking

The imperceptible, **robust**, **secure** communication of information by embedding it in and retrieving it from other digital data.


Other Types of Watermarks


- Imperceptible → Perceptible but unobtrusive
 - closer analogy with paper watermarks
 - less robust? since watermark is easily located
- Robust → Fragile
 - watermark should "fail" even after slight modifications to watermarked data
 - applications: media authentication, tamper detection


Low-bit Modulation: Not Watermarking


Early scheme: alter LSB or low-order bits

Original After embedding


```
131=1000 001
122=0111 101
117=0111 010
: : :
```

- √ imperceptible (modify only LSBs)
- ✓ secure (encrypt embedded information)
- mot robust (e.g., randomly set LSBs to 0 or 1)
- More accurate: secure info-hiding method

Limitations

- Digital watermarking does <u>not</u> prevent copying or distribution
 - (but embedded information remains in copied data)
- Digital watermarking alone is <u>not</u> a complete solution for access/copy control or copyright protection!
- Digital watermarking is a <u>part</u> of a larger system for protecting digital data against unauthorized use

SPREAD-SPECTRUM WATERMARKING

- Principle
- Relation to watermarking
- Direct-sequence spread spectrum
- Possible drawbacks

Spread-Spectrum Principle

- Transmit information via pseudo-random modulation that uses a (much) larger bandwidth than the minimum necessary
- Common techniques
 - direct-sequence spread spectrum
 - multiply information bits directly by a "spreading sequence"
 - statistically, spreading sequence resembles white noise
 - frequency-hopping spread spectrum
 - rapidly change carrier frequency
 - carrier frequencies selected in pseudo-random order

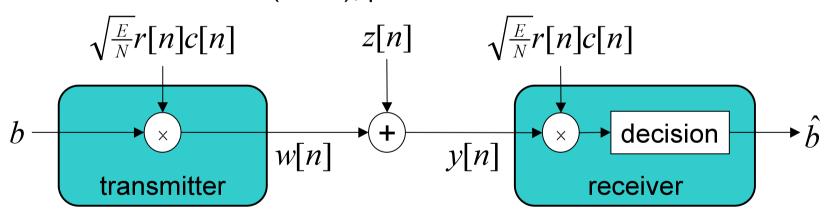
Direct-Sequence Spread Spectrum I

- Repeat message bit $b \in \{-1,+1\}$ N times
 - "chip rate" = N
 - rectangular window r[n]

$$r[n] = \begin{cases} 1, & 0 \le n \le N - 1; \\ 0, & \text{otherwise.} \end{cases}$$

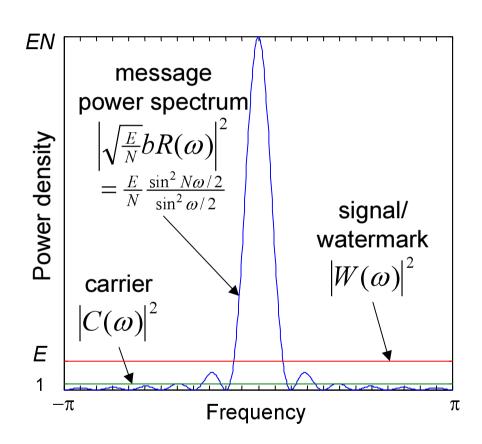
- Spreading sequence $c[n] \in \{-1,+1\}$
 - noise-like statistical properties

$$\frac{1}{N} \sum_{n=0}^{N-1} c[n] \approx 0$$
 zero mean


$$\frac{1}{N} \sum_{n=0}^{N-1} c[n] c[n+k] \approx \delta[k]$$
 autocorrelation

- Gaussian, uniform, other sequences possible
- generated by a secret key (seed) ⇒ SECURITY

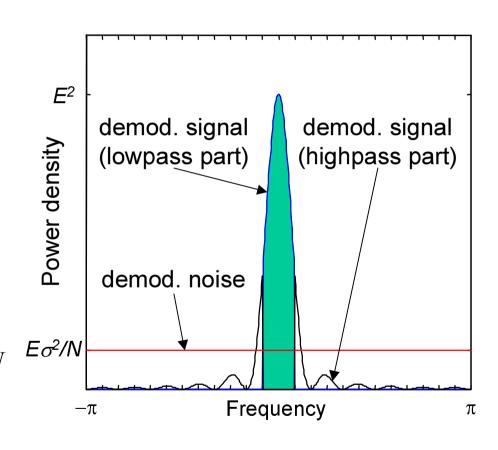
Direct-Sequence Spread Spectrum II


 Standard additive white Gaussian noise (AWGN) channel model

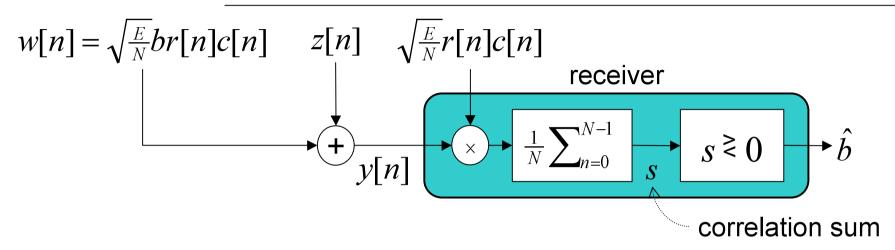
white Gaussian noise (WGN), power σ^2/N

Spreading the Spectrum

- Modulate repeated message bit br[n] with noise-like carrier c[n]
- Convolve their spectra
- Result: "spread" the message spectrum over (much) wider bandwidth
- Signal acts like noise and is conveyed via many small modifications ⇒ IMPERCEPTIBILITY



Processing Gain


After demodulation,

$$SNR = E/\sigma^2$$

- message signal is lowpass
- noise remains white
- Ideal lowpass filtering
 - most of signal passes
 - 1/*N*-th of noise passes SNR _{proc} ≈ *N* × SNR
- "Processing gain" = N
 - increase SNR by factor of N
- Anti-jamming property ⇒ ROBUSTNESS

Correlation Detection I

- Correlation sum s
- Sample correlation of y[n] and c[n]

$$s = \frac{1}{N} \sum_{n=0}^{N-1} \left(\frac{E}{N} br[n] c^{2}[n] + \sqrt{\frac{E}{N}} r[n] c[n] z[n] \right)$$

$$= \frac{E}{N} b + \sqrt{\frac{E}{N}} \cdot \frac{1}{N} \sum_{n=0}^{N-1} c[n] z[n]$$
signal noise

Correlation Detection II

$$s = \underbrace{\frac{E}{N}b}_{\text{signal}} + \underbrace{\sqrt{\frac{E}{N}} \cdot \frac{1}{N} \sum_{n=0}^{N-1} c[n] z[n]}_{\text{noise}}$$

- AWGN or Central Limit Theorem: s is Gaussian
- Conditional mean and variance of s

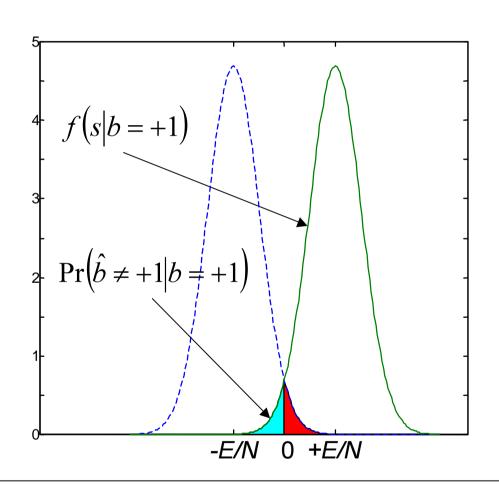
$$E[s|b=b_0] = \frac{E}{N}b_0 \qquad \rightarrow \text{signal power} = \frac{E^2}{N^2}$$

$$var[s|b=b_0] = \frac{E\sigma^2}{N^3} \qquad \rightarrow \text{noise power} = \frac{E\sigma^2}{N^3}$$

- result: processing gain N

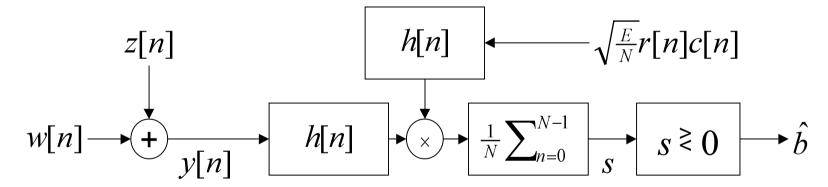
$$SNR_{proc} = N \frac{E}{\sigma^2} = N \cdot SNR$$

Correlation Detection III

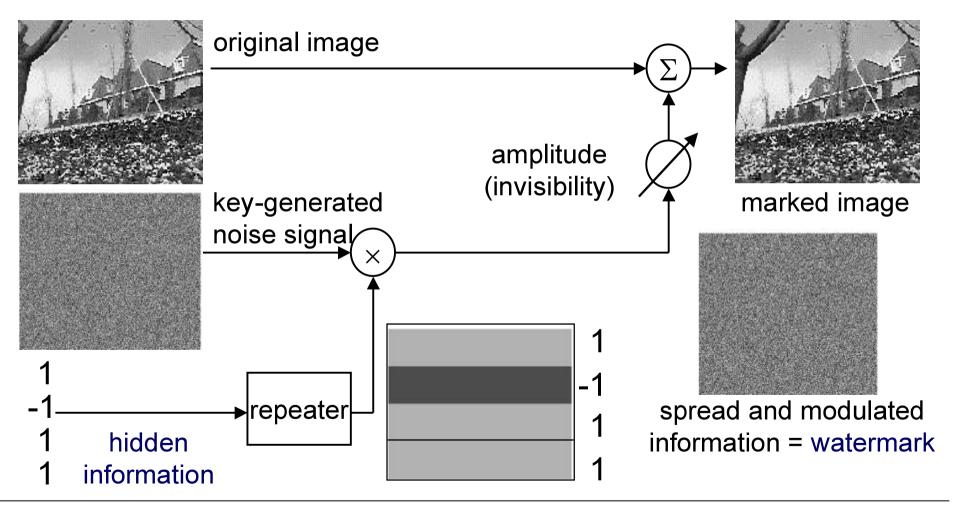

- Correlation sum s
 - assumed Gaussian
 - mean Eb_0/N
 - variance $E\sigma^2/N^3$
- Decision rule becomes

$$\hat{b} = \begin{cases} +1, & \text{if } s > 0; \\ -1 & \text{if } s < 0. \end{cases}$$

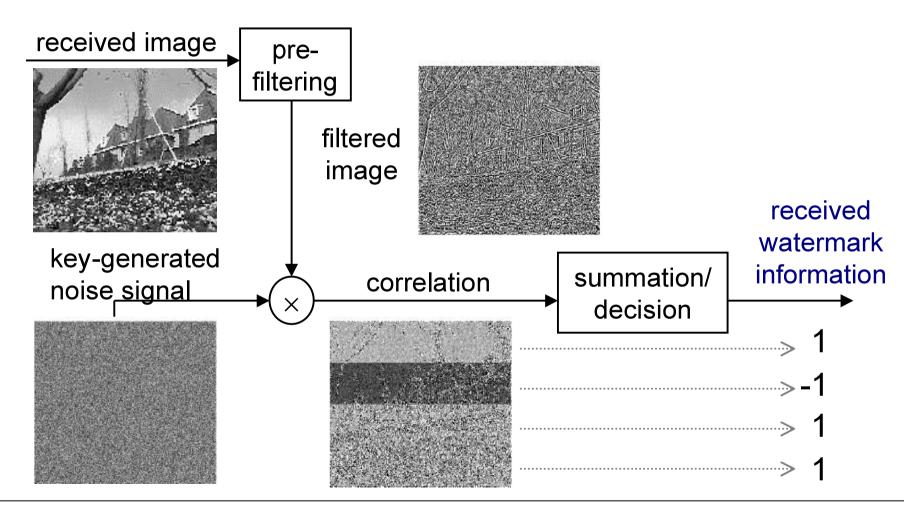
Probability of error


$$P_{E} = \Pr(\hat{b} \neq b_{0} | b = b_{0})$$

$$\approx Q(N\sqrt{\frac{E}{\sigma^{2}}})$$



Colored Noise


- Correlation detection is optimal for <u>white</u> noise
- For colored noise, use pre-whitening filter h[n] [Hancock, Wintz 1966], [Depovere *et al.* 1998], [Kalker, Janssen 1999]

Example: Watermark Embedding

Example: Watermark Retrieval

Early Example: "Patchwork" Algorithm

- 2 disjoint sets, A and B, of n pixels each
 - pixels in each set ("patch") chosen randomly
 - assumption:

$$S = \sum_{i} (A_i - B_i) \approx 0$$

- embedding: $A'_{i} \leftarrow A_{i}+1$, $B'_{i} \leftarrow B_{i}-1$ $S' = \sum_{i} (A'_{i}-B'_{i}) \approx 2n$
- detection: if $S' \approx 2n$, watermark present
- Like spread-spectrum watermarking
 - communicate information via many small changes that are randomly selected

Popular Example: NEC Scheme

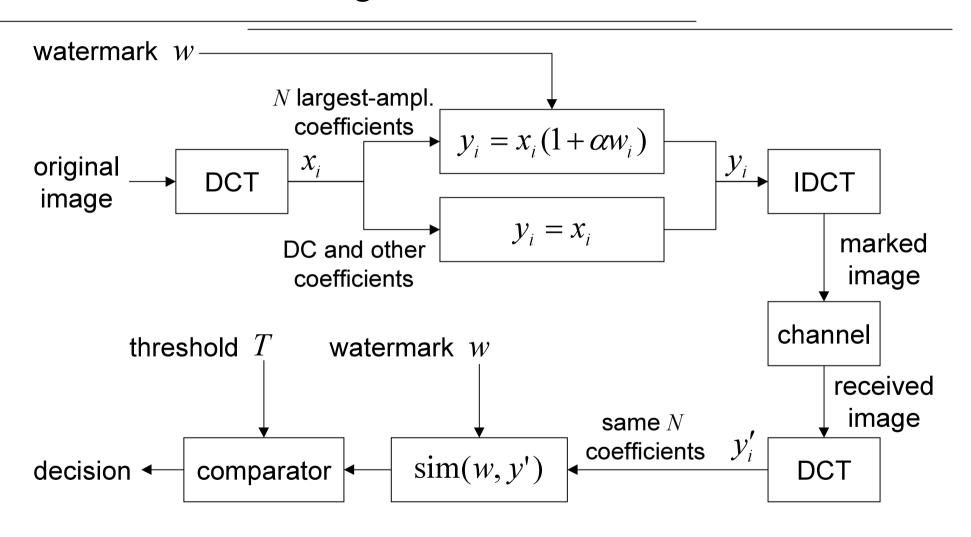
Heuristic claim

 watermark should be embedded in the "perceptually significant frequency components" for best robustness

Embedding

- N watermark samples w_i $\sim N(0,1)$; e.g., N = 1000
- embed in the N largest-amplitude DCT coefficients (except DC coefficient) x_i

$$y_i = x_i(1 + \alpha w_i)$$


Detection

- extract the same N DCT coefficients y_i'
- compute the <u>similarity</u> (normalized correlation) between y_i' and w_i

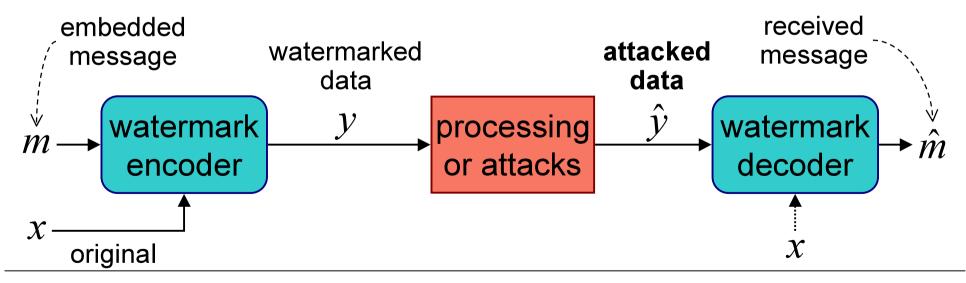
$$sim(w, y') = \frac{\langle w, y' \rangle}{\sqrt{\langle y', y' \rangle}}$$

- watermark w is present if sim(y',w) > T

Block Diagram of NEC Scheme

Possible Drawbacks of Spread Spectrum

- Fails if synchronization is lost
 - autocorrelation property of spreading sequence
 - re-synchronization can be computationally expensive
- Watermark can be removed
 - knowledge of spreading sequence enables one to compute watermark signal and subtract it from the watermarked data
- Blind watermarking
 - imperceptibility means original data behaves like a powerful interferer
 - low communication rates


ATTACKS AND ROBUSTNESS

- Examples and classes of attacks
- Notion of robustness
- Kerckhoff's principle

Definition of Attack

- Watermarked data will likely be processed
- Attack any processing that may coincidentally or intentionally impair communication of the embedded information
- Treat attacks like a communications channel

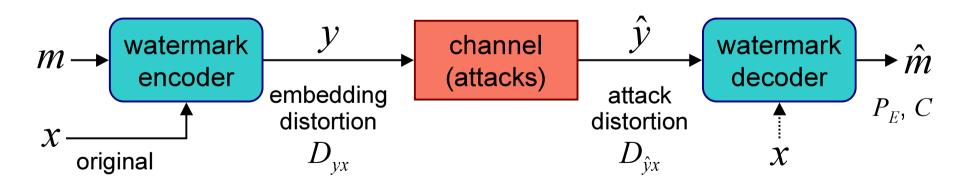
Examples of Attacks

- format conversion
 - $-4:3\rightarrow16:9$, frame rate
- lossy compression
 - JPEG, MPEG-2, MP3
- filtering, additive noise
- D/A+A/D
 - printing & scanning
 - CD→tape→CD
- geometric transformation
 - rotation, scaling, translation
 - cropping, composition
 - zoom, aspect ratio

- jitter
 - interchange of samples
 - line/frame holding/dropping
- histogram equalization
- time/space scaling
- collusion (multiple copies)
 - use several differently marked documents
- deadlock (protocol)
 - generate fake signals
 (watermark, original) that
 cannot be distinguished
 from true signals

Classes of Attacks

- Simple waveform processing - "brute-force"
 - impairs watermark and perhaps original data, too
 - linear filtering, additive compression, noise, quantization
- <u>Detection-disabling</u> disrupt synchronization
 - geometric transformations (RST), cropping, shear, resampling, shuffling
 - watermark harder to locate


- Advanced jamming or removal - intentional attempt to impair/defeat watermark
 - watermark estimation
 - "optimum" attacks
 - collusion (multiple copies)
- Ambiguity/deadlock exploit flaws in protocol
 - fake watermark or original
 - copy watermark signal

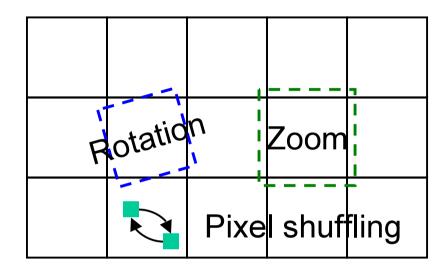
Notion of Robustness

- How well does a watermark resist an attack?
- Easy to define robustness
 - "A watermark is <u>robust</u> if <u>communication</u> cannot be impaired without rendering the attacked data <u>useless</u>."
- Hard to evaluate it
 - "When is communication impaired?"
 - "When is the attacked data useless?"

Evaluating Robustness

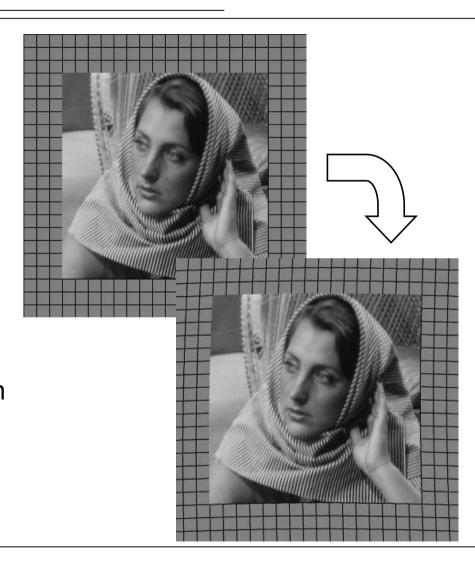
- "When is communication impaired?"
 - watermark-as-signal: no longer reliably detectable
 - watermark-as-information: no longer reliably decodable
 - measure P_E , C, etc.
- "When is the attacked data useless?"
 - multimedia: quantify "usefulness" by measuring <u>distortion</u>
 - also measure distortion after embedding

Attacks to be Discussed


- De-synchronization and re-synchronization
- Quantization and compression
- Watermark estimation
- Theoretically optimum attacks and defenses
- Collusion (multiple copies)
- Ambiguity & deadlock

DE- AND RE-SYNCHRONIZATION

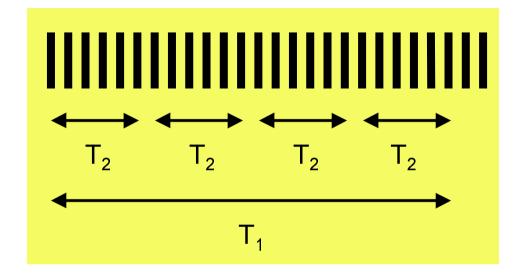
Synchronization


- Loss of synchronization
 - spread spectrum fails
 - defeats simple receivers
 - does <u>not</u> remove watermark signal, but...
 - makes watermark
 signal more difficult to locate

- Better receiver should be able to re-synchronize
- Open question: How to measure distortion?

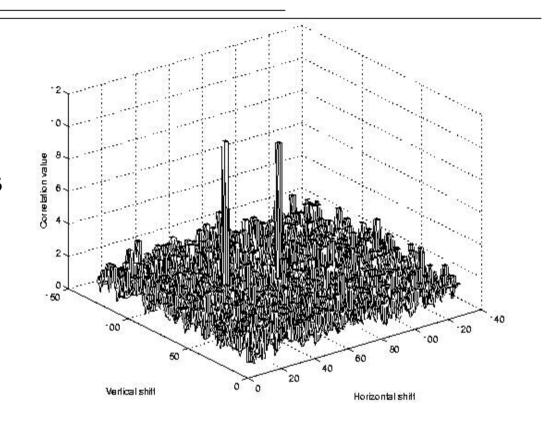
Example: StirMark

- Popular, free software
 - simulates printing & scanning
 - geometric distortion & JPEG (de-synchronization & compression)
 - easy to use and test
 - most features available elsewhere
- Does <u>not</u> use Kerckhoff's principle
 - does not target specific system weaknesses
 - suboptimal attack
 - false sense of security?


JAWS & Millennium

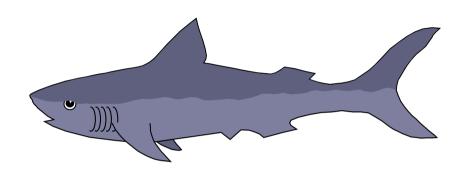
Philips Video
 Watermarking for DVD Video copy protection

Overview JAWS


- JAWS = Just Another
 Watermarking System
- JAWS is a video watermarking system
- JAWS considers video as a sequence of still images
- JAWS marks chunks of T₁ consecutive frames with the same mark.

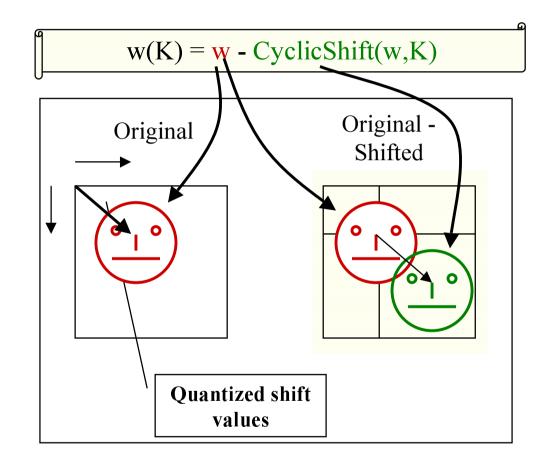
• JAWS detects on chunks of T_2 consecutive frames, $0 < T_2 < T_1$

Overview JAWS

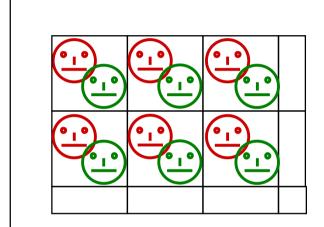

- JAWS embeds marks in the spatial domain
- JAWS uses pseudorandom noise sequences with translational symmetry (i.e. is a repetition of smaller tiles)
- JAWS embeds information (payload) in the *relative* position of embedded marks (not in presence/absence).

JAWS is shift and cropping invariant

Overview JAWS


- Every JAWS detection yields
 - watermark present or not;
 - if present, payload is retrieved,
 - with an indicator of the reliability of detection and payload
- JAWS has successfully been tested in the DHSG of the CPTWG and the VIVA consortium

- JAWS is a registered trademark
- Philips is not allowed to use a shark symbol in connection with JAWS watermarking

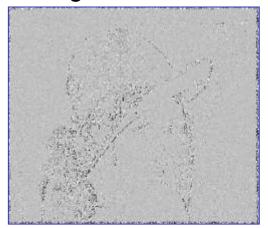

Ingredients

- Random matrix w
 - universal secret
 - size 128 x 128
 - i.i.d. from N(0,1)
- Payload K
 - -4+4=8 bits
- Payload secret w(K)
 - size 128 x 128
 - i.i.d. from N(0,1)

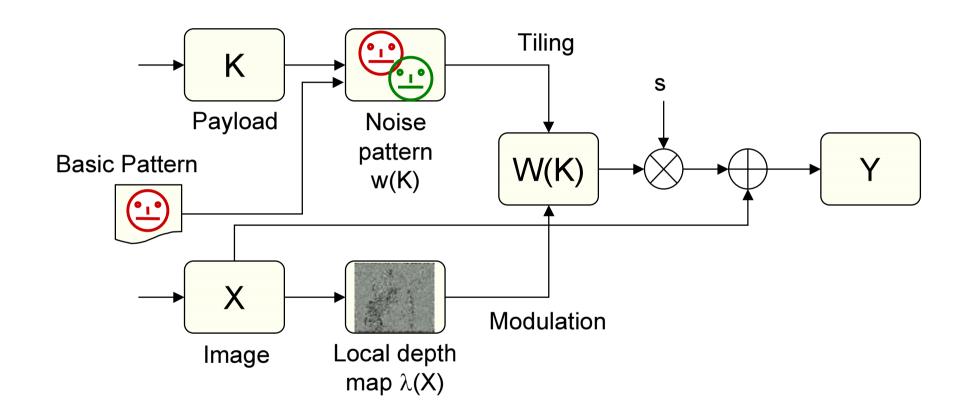
Embedding

- Video is seen as sequence of stills
 - every frame watermarked in identical manner
- w(K) is repeated to size of video frame
 - truncation if necessary
 - tiling
 - W(K)

Covering of a video frame by basic blocks


Local Depth

Embedding rule


$$Y = X + s \lambda(X) W(K)$$

- Embedding depth s
 - controls the reliability of detection
 - frame dependent
 - computable from required reliability and visibility

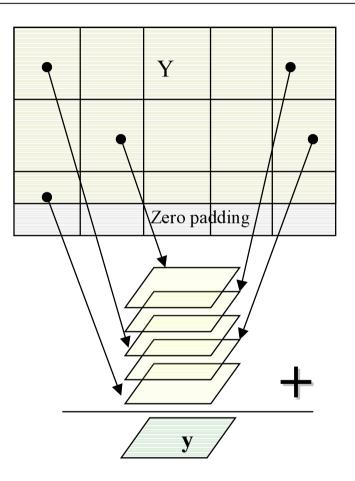
- Local embedding depth λ(X)
 - spatial masking
 - mean($\lambda(X)$) = 1
 - small in non-textured and low luminance areas
 - large in textured and high

Embedding Overview

Detection

Detection is correlation

$$d = \langle Y, W \rangle = \langle X, W \rangle + s \langle W, W \rangle$$


- Robustness increased by
 - accumulation in time (T_2)
 - matched filtering
- Synchronization a priori not known
 - search over 128 x 128 possibilities
 - efficient implementation through
 - folding
 - FFT

Folding

 Efficient implementation of correlation by folding (exploitation of structure of W)

```
- d = <y,w>
```

- y = fold(Y)
- y of size 128 x 128

Synchronization

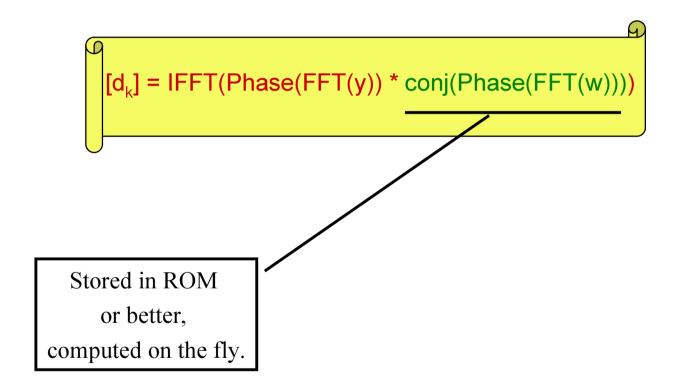
- Detection when synchronization is unknown
 - A priori exhaustive search is needed

$$d_k = \langle CyclicShift(w,k), y \rangle$$

- k ranges over [128 x 128]
- computationally infeasible
- Efficient computation of d_k with Fast Fourier Transform

$$[d_k] = IFFT(FFT(y) * conj(FFT(w)))$$

SPOMF

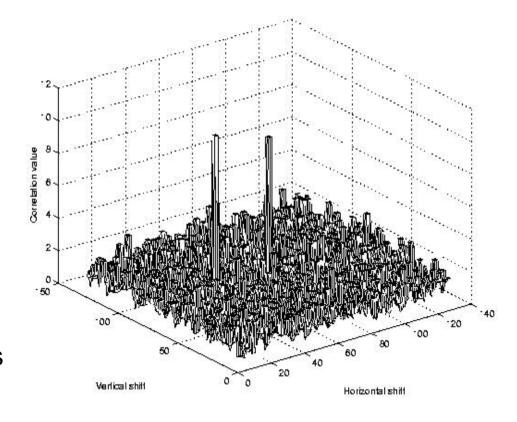

- Matched filtering in the Fourier domain
 - Matched filtering can be done in the Fourier domain
 - no costly spatial filtering
 - Matched filtering can be taken to the extreme
 - "super whitening"
 - Discard magnitude information from FFT(y)

```
Phase(FFT(y)) = FFT(y) / Abs(FFT(y))
```

Extra detection boost by "whitening" FFT(w)

SPOMF (cont.)

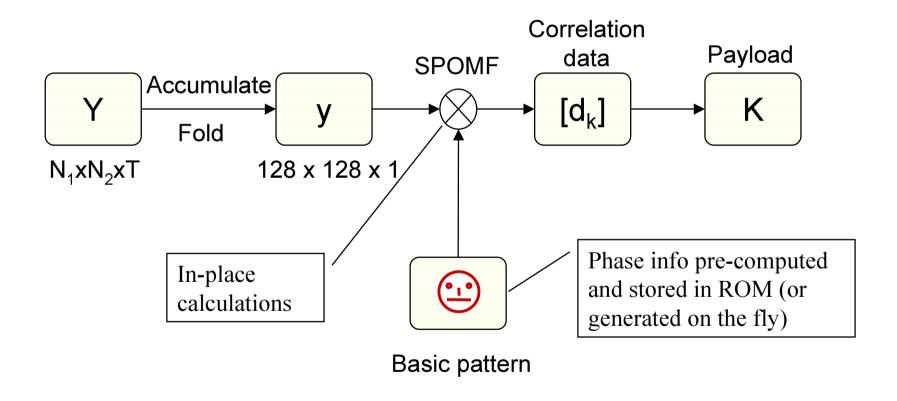
• SPOMF = Symmetrical Phase-Only Matched Filtering



Payload

- Only one SPOMF operation needed
 - SPOMF(y,w) yields two peaks
 - One positive peak at position p
 - One negative peak at position q
 - Payload K retrieved by subtraction

$$K = q - p$$


Invariance for translations

False Positive Rate

- False positive rate with SPOMF
 - The matrix [d_k] can be seen as a set of correlations of the watermark w with a large number of images.
 - The standard deviation Std(d) can be estimated from this matrix.
 - If Y is watermarked, [d_k] will contain 2 large values D_i.
 - The reliability of these peaks an directly be calculated from the quotient D_i / Std(d).
 - For reliable detection, this ratio needs to at least 5.

Detection Overview

Millennium System Aspects

- Location of the watermark detector
- Copy Generation Control

Goal

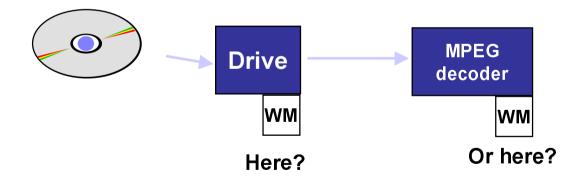
- Goal: a copy protection system for DVD video
 - enforcing the mantra"keep honest people honest"
 - based upon digital watermarks,
 - robust to common processing
 - MPEG encoding, letter-boxing, ...
 - implementing 4 copy protection states,
 - not affecting the content quality,
 - allowing an efficient implementation,

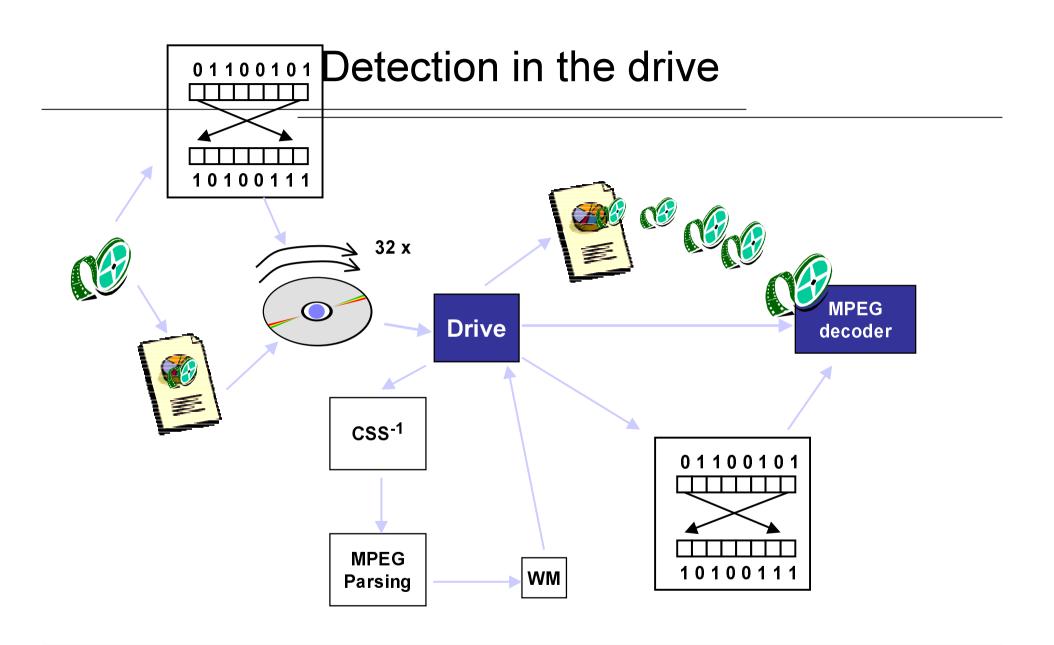
Basic Philosophy

- Watermarking is only a part (though an essential one) of the DVD copy protection system.
- Watermark embedding is a delicate issue. Watermark embedding should only be done in a professional environment as not to compromise the quality of the content.
- Watermark detection should be possible in all video formats. Base-band detection, being the common denominator of all video formats, is therefore a required feature.

- Watermark detection preferably only occurs where base-band video is available.
- Watermark detection does not significantly increase the complexity of the hardware/software module in which it is embedded.
- The copy protection system should be scalable and extendible.
- The total copy protection system needs to implement copy generation control.

System Issues


- System parts
 - JAWS watermarking
 - -
 - _____
- Issues
 - location of the watermark detector
 - Watermark Detector at the application
 - copy generation control through remarking or not
 - Copy Generation Control through tickets


Location of watermark detector

- Two options
 - detector in drive
 - detector near application (MPEG decoder)

Location of the watermark detector

- Two options
 - detector in drive
 - detector near application (MPEG decoder)

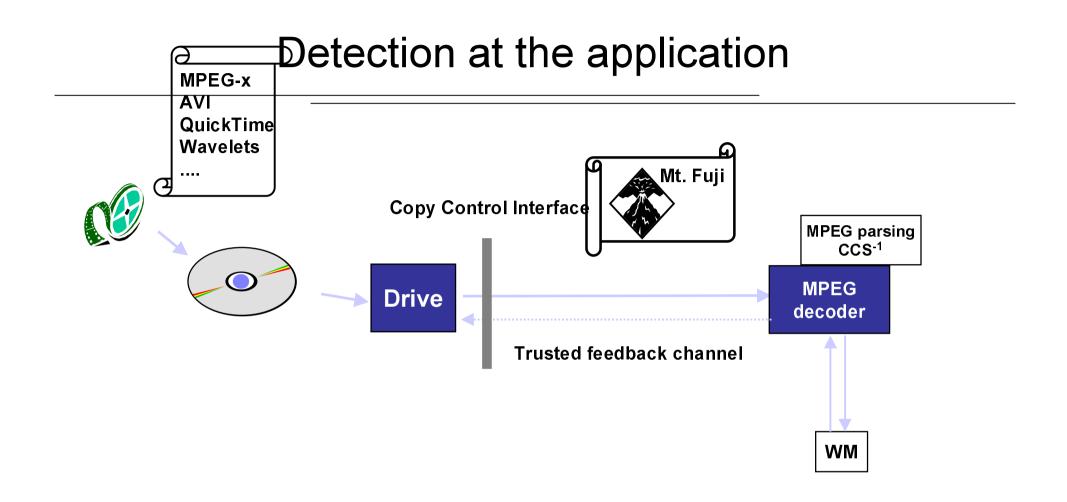
Detection in the drive

Advantages

- copy protected data will leave drive only if allowed
- works with non-compliant decoders and STBs
- drive-to-drive copying included
- Disadvantages
 - no opportunity to share resources
 - <CSS descrambling>, MPEG parsing
 - Detection in the drive has to handle all read methods
 - non-sequential, 32x speed

Detection in the drive

- Disadvantages (cont.)
 - Detection in the drive is not extendable
 - mJPEG, AVI, Wavelets, QuickTime, (MPEG) Audio, ...
 - Detection in the drive allows simple attacks
 - bit-inversion, wrappers, ...


Detection at the application

Advantages

- sharing of resources
- extendable
- simple attacks need non-compliant decoders
- exploitation of crypto infrastructure

Disadvantages

- no digital links between drive and non-compliant application allowed
- disk-to-disk copies need to be mediated

