Statistical Description of Multipath Fading

- The basic Rayleigh or Rician model gives the PDF of envelope
- But: how fast does the signal fade?
- How wide in bandwidth are fades?

Typical system engineering questions:

- What is an appropriate packet duration, to avoid fades?
- For frequency diversity, how far should one separate carriers?
- How far should one separate antennas for diversity?
- What is good a interleaving depth?
- What bit rates work well?
- Why can't I connect an ordinary modem to a cellular phone?

The models discussed in the following sheets will provide insight in these issues

The Mobile Radio Propagation Channel

A wireless channel exhibits severe fluctuations for small

 displacements of the antenna or small carrier frequency offsets.

Channel amplitude in dB versus location (= time * velocity) and frequency

Multipath fading is characterized by two distinct mechanisms

1. Time dispersion

- Time variations of the channel are caused by motion of the antenna
- Channel changes every half a wavelength
- Moving antenna gives Doppler spread
- Fast fading requires short packet durations, thus high bit rates
- Time dispersion poses requirements on synchronization and rate of convergence of channel estimation
- Interleaving may help to avoid burst errors

2. Frequency dispersion

- Delayed reflections cause intersymbol interference
- Channel Equalization may be needed.
- Frequency selective fading
- Multipath delay spreads require long symbol times
- Frequency diversity or spread spectrum may help

Narrowband signal (single frequency)

- Transmit: $\cos \left(2 \pi f_{c} t\right)$
- Receive: $I(t) \cos \left(2 \pi f_{c} t\right)+Q(t) \cos \left(2 \pi f_{c} t\right)$

$$
=R(t) \cos \left(2 \pi f_{c} t+\phi\right)
$$

I-Q phase trajectory

- As a function of time, $I(t)$ and $Q(t)$ follow a random trajectory through the complex plane
- Intuitive conclusion: Deep amplitude fades coincide with large phase rotations

Doppler shift

- All reflected waves arrive from a different angle
- All waves have a different Doppler shift

The Doppler shift of a particular wave is

$$
f_{0}=\frac{v}{c} f_{c} \cos \phi
$$

- Maximum Doppler shift: $\quad f_{D}=f_{c} v / c$

Joint Signal Model

- Infinite number of waves
- Uniform distribution of angle of arrival $\phi: f_{\Phi}(\phi)=1 / 2 \pi$
- First find distribution of angle of arrival the compute distribution of Doppler shifts
- Line spectrum goes into continuous spectrum

Doppler Spectrum

If one transmits a sinusoid, what are the frequency components in the received signal?

- Power density spectrum versus received frequency
- Probability density of Doppler shift versus received frequency
- The Doppler spectrum has a characteristic U-shape.
- Note the similarity with sampling a randomly-phased sinusoid
- No components fall outside interval $\left[f_{c}-f_{D}, f_{c}+f_{D}\right]$
- Components of $+f_{D}$ or $-f_{D}$ appear relatively often
- Fades are not entirely "memory-less"

Derivation of Doppler Spectrum

The power spectrum $S(f)$ is found from
$S\left(f_{0}\right)=\bar{p}\left[f_{\Phi}(\phi) G(\phi)+f_{\Phi}(-\phi) G(-\phi)\right]\left|\frac{d \phi}{d f}\right|_{f_{0}}$
where
$f_{\Phi}(\phi)=1 /(2 \pi)$ is the PDF of angle of incidence
$G(\phi)$ the antenna gain in direction ϕ
\bar{p} local-mean received power
and

$$
f_{0}=f_{c}\left(1+\frac{v}{c} \cos \phi\right)
$$

One finds

$$
\left|\frac{d \phi}{d f}\right|=\frac{1}{\sqrt{f_{D}^{2}-\left(f-f_{c}\right)^{2}}}
$$

Vertical Dipole

- A vertical dipole is omni-directional in horizontal plane
- $\quad G(\phi)=1.5$

We assume

- Uniform angle of arrival of reflections
- No dominant wave

Receiver Power Spectrum

$$
S(f)=\bar{p} \frac{3}{2 \pi} \frac{1}{\sqrt{f_{D}^{2}-\left(f-f_{c}\right)^{2}}}
$$

- Doppler spectrum is centered around f_{c}
- Doppler spectrum has width $2 f_{D}$

Magnetic loop antenna

- $\quad G(\phi)=1.5 \sin ^{2}\left(\phi-\phi_{0}\right)$
with ϕ_{0} the direction angle of the antenna
- This antenna does not see waves from particular directions: it removes some portion of the spectrum

Autocorrelation of the signal

- We know the Doppler spectrum.

But how fast does the channel change?

Wiener-Khinchine Theorem

- Power density spectrum of a random signal is the Fourier Transform of its autocorrelation
- Inverse Fourier Transform of Doppler spectrum gives autocorrelation of $I(t)$ and $Q(t)$

Auto-covariance of received signal amplitude $R^{2}=I^{2}+Q^{2}$
Derived from autocorrelation of I and Q.

Derivation of Autocorrelation of $I Q$-components

We define the autocorrelation

$$
\begin{aligned}
g(\tau) & =\mathrm{E} I(t) I(t+\tau)=\mathrm{E} Q(t) Q(t+\tau) \\
& =\int_{f_{c}-f_{D}}^{f_{c^{+}+f_{D}}} S(f) \cos 2 \pi\left(f-f_{c}\right) \tau d f
\end{aligned}
$$

So

- Autocorrelation depends on $S(f)$, thus on distribution of angles of arrival
- $g(\tau=0)=$ local-mean power: $g(0)=\mathrm{E} I^{2}(t)=\bar{p}$

Note that

- In-phase component and its derivative are independent

$$
g^{\prime}(\tau)=\mathrm{E} I(t) \frac{d I}{d t}=0
$$

For uniform angle of arrival

The autocorrelation function is

$$
g(\tau)=\mathrm{E} I(t) I(t+\tau)=\bar{p} J_{0}\left(2 \pi f_{D} \tau\right)
$$

where
J_{0} is zero-order Bessel function of first kind
f_{D} is the maximum Doppler shift
τ is the time difference

Note that the correlation is a function of distance or time offset:

$$
f_{D} \tau=f_{c} \frac{v}{c} \tau=\frac{d}{\lambda}
$$

where
d is the antenna displacement during τ, with $d=v \tau$
λ is the carrier wavelength (30 cm at 1 GHz)

Relation between I and Q phase

S.O. Rice: Cross-correlation
$h(\tau)=\mathrm{E} I(t) Q(t+\tau)=-\mathrm{E} Q(t) I(t+\tau)$

$$
=\int_{f_{c}-f_{D}}^{f_{c}^{+}+f_{D}} S(f) \sin 2 \pi\left(f-f_{c}\right) \tau d f
$$

For uniformly distributed angle of arrival ϕ

- Doppler spectrum $S(f)$ is even around f_{c}
- Crosscorrelation $h(\tau)$ is zero for all τ
- $\quad I\left(t_{1}\right)$ and $Q\left(t_{2}\right)$ are independent

For any distribution of angles of arrival

- $\quad I\left(t_{l}\right)$ and $Q\left(t_{l}\right)$ are independent $\{\tau=0: h(0)=0\}$

Autocorrelation of amplitude $R^{2}=I^{2}+Q^{2}$

Derivation of $\operatorname{ER}(t) \boldsymbol{R}(t+\tau)$

Davenport \& Root showed that

$$
\mathrm{E} R(t) R(t+\tau)=\frac{\pi}{2} \bar{p} \mathrm{~F}\left[-\frac{1}{2},-\frac{1}{2} ; 1 ; \frac{g^{2}(\tau)+h^{2}(\tau)}{\bar{p}^{2}}\right]
$$

where $\mathrm{F}[\mathrm{a}, \mathrm{b}, \mathrm{c} ; \mathrm{d}]$ is the hypergeometric function
Using a second order series expansion of $\mathrm{F}[\mathrm{a}, \mathrm{b}, \mathrm{c} ; \mathrm{d}]$:
$\mathrm{E} R(t) R(t+\tau)=\frac{\pi}{2} \bar{p}\left[1+\frac{1}{4} \frac{g^{2}(\tau)}{\bar{p}^{2}}\right]$

Result for Autocovariance of Amplitude

- Remove mean-value and normalize
- Autocovariance

$$
C=J_{0}^{2}\left(2 \pi f_{D} \tau\right)
$$

Delay Profile

Typical sample of impulse response $h(t)$

If we transmit a pulse $\delta(t)$ we receive $h(t)$

Delay profile:

PDF of received power: "average $h^{2}(t)$ "

Local-mean power in delay bin $\Delta \tau$ is $\quad \bar{p} f_{\tau}(\tau) \Delta \tau$

RMS Delay Spread and Maximum delay spread

Definitions

n-th moment of delay spread

$$
\mu_{n}=\int_{0}^{\infty} \tau^{n} f_{\tau}(\tau) d \tau
$$

RMS value

$$
T_{R M S}=\frac{1}{\mu_{0}^{2}} \sqrt{\mu_{0} \mu_{2}-\mu_{1}^{2}}
$$

Typical Delay Spreads

Macrocells $\quad T_{\text {RMS }}<8 \mu \mathrm{sec}$

- GSM ($256 \mathrm{kbit} / \mathrm{s}$) uses an equalizer
- IS-54 (48 kbit/s): no equalizer
- In mountainous regions delays of $8 \mu \mathrm{sec}$ and more occur GSM has some problems in Switzerland

Microcells $\quad T_{\text {RMS }}<2 \mu \mathrm{sec}$

- Low antennas (below tops of buildings)

Picocells $T_{\text {RMS }}<50 \mathrm{nsec}-300 \mathrm{nsec}$

- Indoor: often 50 nsec is assumed
- DECT (1 Mbit/s) works well up to 90 nsec

Outdoors, DECT has problem if range > 200 .. 500 m

Typical Delay Profiles

1) Exponential

2) Uniform Delay Profile

- Experienced on some indoor channels
- Often approximated by N -Ray Channel

3) Bad Urban

Effect of Location and Frequency

Model: Each wave has its own angle and excess delay

- Antenna motion changes phase
- changing carrier frequency changes phase

The scattering environment is defined by

- angles of arrival
- excess delays in each path
- power of each path

Scatter function of a Multipath Mobile Channel

- Gives power as function of

Doppler Shift (derived from angle ϕ)
Excess Delay

Example of a scatter plot

Horizontal axes:

- x-axis: Excess delay time
- y-axis: Doppler shift

Vertical axis

- z-axis: received power

Correlation of fading vs. Frequency Separation

Correlation of Signal Amplitude

- When do we experience frequency-selective fading?
- How to choose a good bit rate?
- Where is frequency diversity effective?

In the next slides, we will ...

- give a model for I and Q, for two sinusoids with time and frequency offset,
- derive the covariance matrix for I and Q,
- derive the correlation of envelope R,
- give the result for the autocovariance of R, and
- define the coherence bandwidth.

Inphase and Quadrature-Phase Components

Consider two (random) sinusoidal signals

- Sample 1 at frequency f_{1} at time t_{1}
- Sample 2 at frequency f_{2} at time t_{2}

Effect of displacement on each phasor:

Spatial or temporal displacement:

- Phase difference due to Doppler

Spectral displacement

- Phase difference due to excess delay

Mathematical Treatment:

- $\quad I(t)$ and $Q(t)$ are jointly Gaussian random processes
- $\left(I_{1}, Q_{1}, I_{2}, Q_{2}\right)$ is a jointly Gaussian random vector

Covariance matrix of $\left(I_{1}, Q_{1}, I_{2}, Q_{2}\right)$

$$
\Gamma_{I_{1}, Q_{1}, I_{2}, Q_{2}}=\left[\begin{array}{cccc}
\bar{p} & 0 & \mu_{1} & \mu_{2} \\
0 & \bar{p} & -\mu_{2} & \mu_{1} \\
\mu_{1} & -\mu_{2} & \bar{p} & 0 \\
\mu_{2} & \mu_{1} & 0 & \bar{p}
\end{array}\right]
$$

with
$\mu_{1}=\mathrm{E}_{I_{1} I_{2}}=\bar{p} \frac{J_{0}\left(2 \pi \frac{\nu}{\lambda} \tau\right)}{1+4 \pi^{2}\left(f_{1}-f_{2}\right)^{2} T_{R M S}{ }^{2}}$
and
$\mu_{2}=\mathrm{E}_{I_{1}} Q_{2}=-2 \pi\left(f_{2}-f_{1}\right) \bar{p} \frac{J_{0}\left(2 \pi \frac{v}{\lambda} \tau\right)}{1+4 \pi^{2}\left(f_{1}-f_{2}\right)^{2} T_{R M S}{ }^{2}}$ where
J_{0} is the Bessel function of first kind of order 0.
$T_{R M S}$ is the rms delay spread

Derivation of Joint Probability Density $\boldsymbol{R}_{\mathbf{1}}, \boldsymbol{R}_{\mathbf{2}}$

- Amplitude $R_{1}{ }^{2}=I_{1}{ }^{2}+Q_{1}{ }^{2}$
- Conversion from $\left(I_{1}, Q_{1}, I_{2}, Q_{2}\right)$ to $\left(R_{1}, \phi_{1}, R_{2}, \phi_{2}\right)$.
- Jacobian is $|\boldsymbol{J}|=R_{1} R_{2}$
- so the PDF $f\left(r_{1}, \phi_{1}, r_{2}, \phi_{2}\right)$ is

$$
r_{1} r_{2} f\left(i_{1}=r_{1} \cos \phi_{1}, q_{1}=r_{1} \sin \phi_{1}, i_{2}=r_{2} \cos \phi_{2}, q_{2}=r_{2} \sin \phi_{2}\right) .
$$

Integrating over phases ϕ_{1} and ϕ_{2} gives

$$
f\left(r_{1}, r_{2}\right)=\frac{r_{1} r_{2}}{\bar{p}^{2}\left(1-\rho^{2}\right)} \exp \left\{-\frac{r_{1}^{2}+r_{2}^{2}}{2 \bar{p}\left(1-\rho^{2}\right)}\right\} I_{0}\left(\frac{r_{1} r_{2} \rho}{\bar{p}\left(1-\rho^{2}\right)}\right)
$$

where

- the Bessel function I_{0} occurs due to $\int \exp \{\cos \phi\} d \phi$
- the normalized correlation coefficient ρ is

$$
\rho^{2}=\frac{\mu_{1}^{2}+\mu_{2}^{2}}{\bar{p}^{2}}=\frac{J_{0}^{2}\left(2 \pi \frac{v}{\lambda} \tau\right)}{1+4 \pi^{2}\left(f_{1}-f_{2}\right)^{2} T_{R M S}{ }^{2}}
$$

Derivation of Envelope Correlation $E \boldsymbol{R}_{1} \boldsymbol{R}_{2}$

Definition:

$$
\mathrm{E} R_{1} R_{2}=\int_{0}^{\infty} \int_{0}^{\infty} r_{1} r_{2} f\left(r_{1}, r_{2}\right) d r_{1} d r_{2}
$$

Inserting the PDF (with Bessel function) gives the Hypergeometric integral

$$
\mathrm{E}_{R_{1} R_{2}}=\frac{\pi}{2} \bar{p} F\left(-\frac{1}{2},-\frac{1}{2} ; 1 ; \rho^{2}\right)
$$

This integral can be expanded as

$$
\mathrm{E} R_{1} R_{2}=\frac{\pi}{2} \bar{p}\left[1+2^{-2} \rho^{2}+2^{-6} \rho^{4}+2^{-9} \rho^{6}+\ldots\right]
$$

Mostly, only the first two terms are considered

Normalized Envelope Covariance

Definition:

- Correlation coefficient: Normalized covariance $0 \leq C \leq 1$
where
- Local-mean value: $\mathrm{E} R_{1}=\sqrt{ }(\pi p \quad / 2)$
- Variance: $\quad \operatorname{VAR} R_{1}=\operatorname{SIG}^{2} R_{1}=(2-\pi / 2) \mathrm{p}$
- Correlation: $\mathrm{E} R_{1} R_{2} \approx \pi p / 2\left[1+\rho^{2} / 4\right]$

Result

Thus, after some algebra,

Special cases

- Zero displacement / motion: $\tau=0$
- Zero frequency separation: $\Delta f=0$

Coherence Bandwidth

Definition of Coherence Bandwidth:

- Coherence. Bandwidth is the frequency separation for which the correlation coefficient is down from 1 to 0.5
- Thus $1=2 \pi\left(f_{1}-f_{2}\right) T_{R M S}$ so Coherence Bandwidth BW $=1\left(2 \pi T_{R M S}\right)$
- We derived this for an exponential delay profile

Another rule of thumb:

- ISI affects BER if $T_{b}>0.1 T_{R M S}$

Conclusion:

- Either keep transmission bandwidth much samller than the coherence bandwidth of the channel, or
- use signal processing to overcome ISI, e.g.
- Equalization
- DS-CDMA with rake
- OFDM

Duration of Fades

In the next slides we study the temporal behavior of fades.

Outline:

- \# of level crossings per second
- Model for level crossings
- Derivation
- Model for I, Q and derivatives
- Model for amplitude and derivative
- Discussion of result
- Average non-fade duration
- Effective throughput and optimum packet length
- Average fade-duration

Gilbert-Elliot Model

Very simple mode: channel has two-states

- Good state: Signal above "threshold", BER is virtually zero
- Poor state: "Signal outage", BER is $1 / 2$, receiver falls out of sync, etc

Markov model approach:

- Memory-less transitions
- Exponential distribution of sojourn time

This model may be sufficiently realistic for many investigations

Level crossings per second

- Av. number of crossings per sec $=[\text { av. interfade time }]^{-1}$

Number of level crossing per sec is proportional to

- \quad speed r^{\prime} of crossing $R\left(\right.$ derivative $\left.r^{\prime}=d r / d t\right)$
- probability of r being in $[R, R+d R]$

Derivation of Level Crossings per Second

The expected number of crossings in positive direction per second is [Rice]

$$
N^{+}=\int_{0}^{\infty} \hat{r} f(\hat{r}, R) d \hat{r}
$$

- Random process r^{\wedge} is derivative of the envelope r w.r.t. time
- Note: here we need the joint PDF; not the conditional $\operatorname{PDF} f\left(r^{\wedge} \mid r=R\right)$

Covariance matrix of $\left(I, Q, I^{\wedge}, Q^{\wedge}\right)$

In-phase, quadrature and the derivatives are Jointly Gaussian with

$$
\Gamma_{I, Q, \hat{l}, \hat{Q}}=\left[\begin{array}{cccc}
\bar{p} & 0 & 0 & b_{1} \\
0 & \bar{p} & -b_{1} & 0 \\
0 & -b_{1} & b_{2} & 0 \\
b_{1} & 0 & 0 & b_{2}
\end{array}\right]
$$

where
b_{n} is n-th moment of Doppler spectral power density

$$
b_{n}=(2 \pi)^{n} \int_{f_{c^{-}} f_{D}}^{f_{c^{+}+f_{D}}} S(f)\left(f-f_{c}\right)^{n} d f
$$

For uniform angles of arrival

$$
b_{n}=\left\{\begin{array}{rr}
\bar{p}\left(2 \pi f_{D}\right)^{n} \frac{(n-1)!!}{n!} & \text { for } n \text { even } \\
0 & \text { for } n \text { odd }
\end{array}\right.
$$

where ($n-1$)!! = 135(n-1)

Joint PDF of R, $\mathbf{R}^{\wedge}, \Phi, \Phi^{\wedge}$

.... After some algebra ...

$$
f(r, \hat{r}, \boldsymbol{\phi}, \hat{\phi})=\frac{r^{2}}{4 \pi^{2} \bar{p} b_{2}} \exp \left\{-\frac{1}{2}\left(\frac{r^{2}}{\bar{p}}+\frac{\hat{r}^{2}}{b_{2}}+\frac{r^{2} \hat{\phi}^{2}}{b_{2}}\right)\right\}
$$

So

- $\quad r$ and r^{\wedge} are independent
- phase ϕ is uniform

Averaging over ϕ and ϕ^{\wedge} gives

- $\quad r$ is Rayleigh
- $\quad r^{\wedge}$ is zero mean Gaussian with variance b_{2}

Level Crossings per Second

We insert this pdf in

$$
N^{+}=\int_{0}^{\infty} \hat{r} f\left(\hat{r}, R=R_{0}\right) d \hat{r}
$$

We find

$$
N^{+}=\frac{\sqrt{2 \pi} f_{D}}{\sqrt{\eta}} e^{-\frac{1}{\eta}}
$$

where
η is the fade margin $\eta=2 p /\left(R_{0}{ }^{2}\right)$

Level crossing rate has a maximum for thresholds R_{0} close to the mean value of amplitude

Similarly for Rician fading

$$
N^{+}=\sqrt{\pi \bar{p}} f_{D} f_{R}\left(R_{0}\right)
$$

Average Fade / Nonfade Duration

Signal Amplitude

- Fade durations are relevant to choose packet duration
- Duration depend on
- fade margin $\gamma=2 p / R_{0}{ }^{2}$
- Doppler spread

Average fade duration T_{F}

$$
N^{-} T_{F}=\operatorname{Pr}\left(R \leq R_{0}\right)
$$

Average nonfade duration $T_{N F}$

$$
N^{+} T_{N F}=\operatorname{Pr}\left(R \geq R_{0}\right)
$$

Average nonfade duration

$$
T_{N F}=\frac{e^{-\frac{1}{\eta}}}{\frac{\sqrt{2 \pi} f_{D}}{\sqrt{\eta}} e^{-\frac{l}{\eta}}}=\frac{\sqrt{\eta}}{\sqrt{2 \pi} f_{D}}
$$

- Average nonfade duration is inversely proportional to Doppler spread
- Average nonfade duration is proportional to fade margin

Optimal Packet length

We want to optimize
\#User bits
Effective throughput $=$ -------------- Probability of success
\#Packet bits
This gives a trade off between

- Short packets: much overhead (headers, sync. words etc).
- Long packets: may experience fade before end of packet.

- At 1200 bit/s, throughput is virtually zero: Almost all packets run into a fade. Packets are too long
- At high bit rates, many packets can be exchanged during nonfade periods. Intuition:

Packet duration \ll Av. nonfade duration

Derivation of Optimal Packet length

- Assume exponential, memoryless nonfade durations
(This is an approximation: In reality many nonfade periods have duration of $\lambda / 2$, due to U-shaped Doppler spectrum)
- Successful reception if

1) Above threshold at start of packet
2) No fade starts before packet ends

Formula:

$$
\mathrm{P}(\text { succ })=\exp \left(-\frac{1}{\eta}-\frac{T_{L}}{T_{N F}}\right)=\exp \left(-\frac{1}{\eta}-\frac{\sqrt{2 \pi} f_{D} T_{L}}{\sqrt{\eta}}\right)
$$

with T_{L} packet duration

- large fade margin: second term dominates:
- performance improves only slowly with increasing η
- Outage probability is too optimistic

Average fade duration

$$
T_{F}=\frac{\sqrt{\eta}}{\sqrt{2 \pi} f_{D}}[\exp (\eta)-1]
$$

- Average fade / nonfade duration is inversely proportional to Doppler spread
- At very low fading margins, effect of the number of interfering signals n is significant
- Fade durations rapidly reduce with increasing margin, but time between fades increases much slower
- Experiments: For Large fade margins: exponentially distributed fade durations
- Relevant to find length of error bursts and design of interleaving

