Statistical Description of Multipath Fading

- The basic Rayleigh or Rician model gives the PDF of envelope
- But: how fast does the signal fade?
- How wide in bandwidth are fades?

Typical system engineering questions:

- What is an appropriate packet duration, to avoid fades?
- For frequency diversity, how far should one separate carriers?
- How far should one separate antennas for diversity?
- What is good a interleaving depth?
- What bit rates work well?
- Why can't I connect an ordinary modem to a cellular phone?

The models discussed in the following sheets will provide insight in these issues

The Mobile Radio Propagation Channel

A wireless channel exhibits severe fluctuations for small displacements of the antenna or small carrier frequency offsets.

Channel amplitude in dB versus location (= time * velocity) and frequency

Multipath fading is characterized by two distinct mechanisms

1. Time dispersion

- Time variations of the channel are caused by motion of the antenna
- Channel changes every half a wavelength
- Moving antenna gives Doppler spread
- Fast fading requires short packet durations, thus high bit rates
- Time dispersion poses requirements on synchronization and rate of convergence of channel estimation
- Interleaving may help to avoid burst errors

2. Frequency dispersion

- Delayed reflections cause intersymbol interference
- Channel Equalization may be needed.
- Frequency selective fading
- Multipath delay spreads require long symbol times
- Frequency diversity or spread spectrum may help

Narrowband signal (single frequency)

- Transmit: $\cos(2\pi f_c t)$
- Receive: $I(t) \cos(2\pi f_c t) + Q(t) \cos(2\pi f_c t)$

$$= R(t)\cos(2\pi f_c t + \phi)$$

I-Q phase trajectory

- As a function of time, *I*(*t*) and *Q*(*t*) follow a random trajectory through the complex plane
- Intuitive conclusion: Deep amplitude fades coincide with large phase rotations

Doppler shift

- All reflected waves arrive from a different angle
- All waves have a different Doppler shift

The Doppler shift of a particular wave is

$$f_0 = \frac{v}{c} f_c \cos\phi$$

• Maximum Doppler shift: $f_D = f_c v/c$

Joint Signal Model

- Infinite number of waves
- Uniform distribution of angle of arrival ϕ : $f_{\Phi}(\phi) = \frac{1}{2\pi}$
- First find distribution of angle of arrival the compute distribution of Doppler shifts
- Line spectrum goes into continuous spectrum

Doppler Spectrum

If one transmits a sinusoid, what are the frequency components in the received signal?

- Power density spectrum versus received frequency
- Probability density of Doppler shift versus received frequency
- The Doppler spectrum has a characteristic U-shape.
- Note the similarity with sampling a randomly-phased sinusoid
- No components fall outside interval $[f_c f_D, f_c + f_D]$
- Components of $+ f_D$ or $-f_D$ appear relatively often
 - Fades are not entirely "memory-less"

Derivation of Doppler Spectrum

The power spectrum S(f) is found from

$$S(f_0) = \overline{p} \left[f_{\Phi}(\phi) G(\phi) + f_{\Phi}(-\phi) G(-\phi) \right] \left| \frac{d\phi}{df} \right|_{f_0}$$

where

 $f_{\Phi}(\phi) = 1/(2\pi)$ is the PDF of angle of incidence $G(\phi)$ the antenna gain in direction ϕ \overline{p} local-mean received power and

$$f_0 = f_c \left(1 + \frac{v}{c} \cos\phi\right)$$

One finds

$$\left|\frac{d\phi}{df}\right| = \frac{1}{\sqrt{f_D^2 - (f - f_c)^2}}$$

Vertical Dipole

- A vertical dipole is omni-directional in horizontal plane
- $G(\phi) = 1.5$

We assume

- Uniform angle of arrival of reflections
- No dominant wave

Receiver Power Spectrum

$$S(f) = \bar{p} \frac{3}{2\pi} \frac{1}{\sqrt{f_D^2 - (f - f_c)^2}}$$

- Doppler spectrum is centered around f_c
- Doppler spectrum has width $2 f_D$

Magnetic loop antenna

• $G(\phi) = 1.5 \sin^2(\phi - \phi_0)$

with ϕ_0 the direction angle of the antenna

• This antenna does not see waves from particular directions: it removes some portion of the spectrum

Autocorrelation of the signal

We know the Doppler spectrum.
 But how fast does the channel change?

Wiener-Khinchine Theorem

- Power density spectrum of a random signal is the Fourier Transform of its autocorrelation
- Inverse Fourier Transform of Doppler spectrum gives autocorrelation of I(t) and Q(t)

Auto-covariance of received signal amplitude $R^2 = I^2 + Q^2$ Derived from autocorrelation of *I* and *Q*.

Derivation of Autocorrelation of *IQ***-components**

We define the autocorrelation

$$g(\tau) = \mathbf{E} I(t)I(t+\tau) = \mathbf{E} Q(t)Q(t+\tau)$$

$$= \int_{f_c - f_D}^{f_c + f_D} S(f) \cos 2\pi (f - f_c) \tau \, df$$

So

• Autocorrelation depends on *S*(*f*), thus on distribution of angles of arrival

•
$$g(\tau = 0) = \text{local-mean power:} \quad g(0) = \text{ E } I^2(t) = p$$

Note that

• In-phase component and its derivative are independent

$$g'(\tau) = E I(t) \frac{dI}{dt} = 0$$

For uniform angle of arrival

The autocorrelation function is

$$g(\tau) = \mathrm{E} I(t)I(t+\tau) = \overline{p} J_0(2\pi f_D \tau)$$

where

 J_0 is zero-order Bessel function of first kind f_D is the maximum Doppler shift τ is the time difference

Note that the correlation is a function of distance or time offset:

$$f_D \tau = f_c \frac{v}{c} \tau = \frac{d}{\lambda}$$

where

d is the antenna displacement during τ , with $d = v \tau$

 λ is the carrier wavelength (30 cm at 1 GHz)

Relation between I and Q phase

S.O. Rice: Cross-correlation

 $h(\tau) = \mathbf{E} I(t)Q(t+\tau) = -\mathbf{E} Q(t)I(t+\tau)$

$$= \int_{f_c^{-f_D}}^{f_c^{+f_D}} S(f) \sin 2\pi (f - f_c) \tau \, df$$

For uniformly distributed angle of arrival $\boldsymbol{\varphi}$

- Doppler spectrum S(f) is even around f_c
- Crosscorrelation $h(\tau)$ is zero for all τ
- $I(t_1)$ and $Q(t_2)$ are independent

For any distribution of angles of arrival

• $I(t_1)$ and $Q(t_1)$ are independent { $\tau = 0$: h(0) = 0}

Autocorrelation of amplitude $R^2 = I^2 + Q^2$

Derivation of E $R(t)R(t + \tau)$

Davenport & Root showed that

$$\mathbf{E} R(t)R(t+\tau) = \frac{\pi}{2} \frac{\pi}{p} \mathbf{F} \left[-\frac{1}{2} , -\frac{1}{2} ; 1 ; \frac{g^2(\tau) + h^2(\tau)}{\frac{p^2}{p}} \right]$$

where F[a, b, c ; d] is the hypergeometric function Using a second order series expansion of F[a, b, c ; d]:

$$\mathbf{E} R(t)R(t+\tau) = \frac{\pi}{2} \frac{\pi}{p} \left[1 + \frac{1}{4} \frac{g^{2}(\tau)}{\frac{-2}{p}} \right]$$

Result for Autocovariance of Amplitude

- Remove mean-value and normalize
- Autocovariance

$$C = J_0^2 \left(2\pi f_D \tau \right)$$

Delay Profile

Typical sample of impulse response h(t)

If we transmit a pulse $\delta(t)$ we receive h(t)

Delay profile:

PDF of received power: "average $h^2(t)$ "

Local-mean power in delay bin $\Delta \tau$ is $p f_{\tau}(\tau) \Delta \tau$

RMS Delay Spread and Maximum delay spread

Definitions

n-th moment of delay spread

$$\mu_n = \int_0^\infty \tau^n f_{\tau}(\tau) d\tau$$

RMS value

$$T_{RMS} = \frac{1}{\mu_0^2} \sqrt{\mu_0 \mu_2 - \mu_1^2}$$

Typical Delay Spreads

Macrocells $T_{\rm RMS} < 8 \,\mu {\rm sec}$

- GSM (256 kbit/s) uses an equalizer
- IS-54 (48 kbit/s): no equalizer
- In mountainous regions delays of 8 µsec and more occur GSM has some problems in Switzerland

Microcells $T_{\rm RMS} < 2 \,\mu {\rm sec}$

• Low antennas (below tops of buildings)

Picocells $T_{\text{RMS}} < 50$ nsec - 300 nsec

- Indoor: often 50 nsec is assumed
- DECT (1 Mbit/s) works well up to 90 nsec
 Outdoors, DECT has problem if range > 200 .. 500 m

Typical Delay Profiles

1) Exponential

2) Uniform Delay Profile

- Experienced on some indoor channels
- Often approximated by *N*-Ray Channel
- 3) Bad Urban

Effect of Location and Frequency

Model: Each wave has its own angle and excess delay

- Antenna motion changes phase
- changing carrier frequency changes phase

The scattering environment is defined by

- angles of arrival
- excess delays in each path
- power of each path

Scatter function of a Multipath Mobile Channel

Gives power as function of
 Doppler Shift (derived from angle φ)
 Excess Delay

Example of a scatter plot

Horizontal axes:

- x-axis: Excess delay time
- y-axis: Doppler shift

Vertical axis

• z-axis: received power

Correlation of fading vs. Frequency Separation

- When do we experience frequency-selective fading?
- How to choose a good bit rate?
- Where is frequency diversity effective?

In the next slides, we will ...

- give a model for *I* and *Q*, for two sinusoids with time and frequency offset,
- derive the covariance matrix for *I* and *Q*,
- derive the correlation of envelope *R*,
- give the result for the autocovariance of *R*, and
- define the coherence bandwidth.

Inphase and Quadrature-Phase Components

Consider two (random) sinusoidal signals

- Sample 1 at frequency f_1 at time t_1
- Sample 2 at frequency f_2 at time t_2

Effect of displacement on each phasor:

Spatial or temporal displacement:

- Phase difference due to Doppler Spectral displacement
- Phase difference due to excess delay

Mathematical Treatment:

- I(t) and Q(t) are jointly Gaussian random processes
- (I_1, Q_1, I_2, Q_2) is a jointly Gaussian random vector

Covariance matrix of (I_1, Q_1, I_2, Q_2)

$$\Gamma_{I_{1},Q_{1},I_{2},Q_{2}} = \begin{bmatrix} -p & 0 & \mu_{1} & \mu_{2} \\ 0 & -p & -\mu_{2} & \mu_{1} \\ \mu_{1} & -\mu_{2} & -p & 0 \\ \mu_{2} & \mu_{1} & 0 & -p \end{bmatrix}$$

with

$$\mu_{1} = E I_{1}I_{2} = \overline{p} \frac{J_{0}(2\pi \frac{v}{\lambda}\tau)}{1 + 4\pi^{2}(f_{1} - f_{2})^{2}T_{RMS}^{2}}$$

and

$$\mu_{2} = E I_{1}Q_{2} = -2\pi (f_{2} - f_{1})\overline{p} \frac{J_{0}(2\pi \frac{v}{\lambda}\tau)}{1 + 4\pi^{2} (f_{1} - f_{2})^{2} T_{RMS}^{2}}$$

where

 J_0 is the Bessel function of first kind of order 0. T_{RMS} is the rms delay spread

Derivation of Joint Probability Density R₁, R₂

- Amplitude $R_1^2 = I_1^2 + Q_1^2$
- Conversion from (I_1, Q_1, I_2, Q_2) to $(R_1, \phi_1, R_2, \phi_2)$.
 - Jacobian is $|\boldsymbol{J}| = R_1 R_2$
 - so the PDF $f(r_1, \phi_1, r_2, \phi_2)$ is $r_1r_2 f(i_1=r_1\cos\phi_1, q_1=r_1\sin\phi_1, i_2=r_2\cos\phi_2, q_2=r_2\sin\phi_2).$

Integrating over phases ϕ_1 and ϕ_2 gives

$$f(r_1, r_2) = \frac{r_1 r_2}{\overline{p}^2 (1 - \rho^2)} \exp\left\{-\frac{r_1^2 + r_2^2}{2\overline{p} (1 - \rho^2)}\right\} I_0\left(\frac{r_1 r_2 \rho}{\overline{p} (1 - \rho^2)}\right)$$

where

- the Bessel function I_0 occurs due to $\int \exp\{\cos\phi\} d\phi$
- the normalized correlation coefficient ρ is

$$\rho^{2} = \frac{\mu_{1}^{2} + \mu_{2}^{2}}{\frac{-2}{p}} = \frac{J_{0}^{2}(2\pi \frac{v}{\lambda}\tau)}{1 + 4\pi^{2}(f_{1} - f_{2})^{2}T_{RMS}^{2}}$$

Derivation of Envelope Correlation ER_1R_2

Definition:

$$\mathbf{E} \, \mathbf{R}_1 \, \mathbf{R}_2 = \int_0^\infty \int_0^\infty r_1 r_2 \, f(r_1, r_2) \, dr_1 dr_2$$

Inserting the PDF (with Bessel function) gives the Hypergeometric integral

$$E R_1 R_2 = \frac{\pi}{2} p F\left(-\frac{1}{2}, -\frac{1}{2}; 1; \rho^2\right)$$

This integral can be expanded as

$$\mathbf{E} R_{1} R_{2} = \frac{\pi}{2} \frac{\pi}{p} \left[1 + 2^{-2} \rho^{2} + 2^{-6} \rho^{4} + 2^{-9} \rho^{6} + \ldots \right]$$

Mostly, only the first two terms are considered

Normalized Envelope Covariance

Definition:

• Correlation coefficient: Normalized covariance $0 \le C \le 1$

$$C_{R_1R_2} = \frac{\text{COV}(r_1, r_2)}{\text{SIG}(r_1) \text{ SIG}(r_2)} = \frac{\text{E}r_1r_2 - \text{E}r_1\text{E}r_2}{\sqrt{\text{E}r_1^2 - \text{E}^2r_1} \sqrt{\text{E}r_2^2 - \text{E}^2r_2}} =$$

where

- Local-mean value: $ER_1 = \sqrt{(\pi p / 2)}$
- Variance: $VARR_1 = SIG^2 R_1 = (2 \pi / 2)p$
- Correlation: $ER_1R_2 \approx \pi p / 2 [1 + \rho^2 / 4]$

Result

Thus, after some algebra,

$$C_{R_{1},R_{2}} \approx \rho^{2} = \frac{J_{0}^{2}(2\pi \frac{v}{\lambda}\tau)}{1 + 4\pi^{2}(f_{1} - f_{2})^{2}T_{RMS}^{2}}$$

Special cases

- Zero displacement / motion: $\tau = 0$
- Zero frequency separation: $\Delta f = 0$

Coherence Bandwidth

Definition of Coherence Bandwidth:

- Coherence. Bandwidth is the frequency separation for which the correlation coefficient is down from 1 to 0.5
- Thus $1 = 2\pi (f_1 f_2) T_{RMS}$

so Coherence Bandwidth BW = 1 ($2\pi T_{RMS}$)

• We derived this for an exponential delay profile

Another rule of thumb:

• ISI affects BER if $T_b > 0.1T_{RMS}$

Conclusion:

- Either keep transmission bandwidth much samller than the coherence bandwidth of the channel, or
- use signal processing to overcome ISI, e.g.
 - Equalization
 - DS-CDMA with rake
 - OFDM

Duration of Fades

In the next slides we study the temporal behavior of fades.

Outline:

- # of level crossings per second
 - Model for level crossings
 - Derivation
 - Model for I, Q and derivatives
 - Model for amplitude and derivative
 - Discussion of result
- Average non-fade duration
- Effective throughput and optimum packet length
- Average fade-duration

Gilbert-Elliot Model

Very simple mode: channel has two-states

- Good state: Signal above "threshold", BER is virtually zero
- Poor state: "Signal outage", BER is 1/2, receiver falls out of sync, etc

Markov model approach:

- Memory-less transitions
- Exponential distribution of sojourn time

This model may be sufficiently realistic for many investigations

Level crossings per second

• Av. number of crossings per sec = $[av. interfade time]^{-1}$

Number of level crossing per sec is proportional to

- speed *r*' of crossing *R* (derivative r' = dr/dt)
- probability of *r* being in [R, R + dR]

Derivation of Level Crossings per Second

The expected number of crossings in positive direction per second is [Rice]

$$N^+ = \int_0^\infty \hat{r} f(\hat{r}, R) \, d\hat{r}$$

- Random process r^ is derivative of the envelope r w.r.t.
 time
- Note: here we need the *joint* PDF;

not the *conditional* PDF $f(r^{n} | r=R)$

Covariance matrix of $(I, Q, I^{\wedge}, Q^{\wedge})$

In-phase, quadrature and the derivatives are Jointly Gaussian with

$$\Gamma_{I,Q,\hat{I},\hat{Q}} = \begin{bmatrix} -p & 0 & 0 & b_1 \\ 0 & -p & -b_1 & 0 \\ 0 & -b_1 & b_2 & 0 \\ b_1 & 0 & 0 & b_2 \end{bmatrix}$$

where

 b_n is *n*-th moment of Doppler spectral power density

$$b_n = (2\pi)^n \int_{f_c-f_D}^{f_c+f_D} S(f) (f - f_c)^n df$$

For uniform angles of arrival

$$b_n = \begin{cases} -\frac{1}{p} (2\pi f_D)^n \frac{(n-1)!!}{n!} & \text{for } n \text{ even} \\ 0 & \text{for } n \text{ odd} \end{cases}$$

where $(n-1)!! = 1 \ 3 \ 5 \ \dots \ (n-1)$

Joint PDF of R, R^{\wedge}, Φ , Φ ^{\wedge}

.... After some algebra ...

$$f(r,\hat{r},\phi,\hat{\phi}) = \frac{r^2}{4\pi^2 p b_2} \exp\left\{-\frac{1}{2}\left(\frac{r^2}{p} + \frac{\hat{r}^2}{b_2} + \frac{r^2 \hat{\phi}^2}{b_2}\right)\right\}$$

So

- *r* and *r*^ are independent
- phase ϕ is uniform

Averaging over ϕ and ϕ^{\wedge} gives

- *r* is Rayleigh
- r^{\wedge} is zero mean Gaussian with variance b_2

Level Crossings per Second

We insert this pdf in

$$N^+ = \int_0^\infty \hat{r} f(\hat{r}, R = R_0) d\hat{r}$$

We find

$$N^+ = \frac{\sqrt{2\pi} f_D}{\sqrt{\eta}} e^{-\frac{1}{\eta}}$$

where

 η is the fade margin $\eta = 2 p / (R_0^2)$

Level crossing rate has a maximum for thresholds R_0 close to the mean value of amplitude

Similarly for Rician fading

$$N^+ = \sqrt{\pi p} f_D f_R(R_0)$$

Average Fade / Nonfade Duration

- Fade durations are relevant to choose packet duration
- Duration depend on
 - fade margin $\gamma = 2 p / R_0^2$
 - Doppler spread

Average fade duration T_F

$$N^- T_F = \Pr(R \le R_0)$$

Average nonfade duration T_{NF}

$$N^+$$
 $T_{NF} = \Pr(R \ge R_0)$

Average nonfade duration

$$T_{NF} = \frac{e^{-\frac{1}{\eta}}}{\frac{\sqrt{2\pi} f_D}{\sqrt{\eta}} e^{-\frac{1}{\eta}}} = \frac{\sqrt{\eta}}{\sqrt{2\pi} f_D}$$

- Average nonfade duration is inversely proportional to Doppler spread
- Average nonfade duration is proportional to fade margin

Optimal Packet length

We want to optimize

#User bits Effective throughput = ------ Probability of success #Packet bits

This gives a trade off between

- Short packets: much overhead (headers, sync. words etc).
- Long packets: may experience fade before end of packet.

- At 1200 bit/s, throughput is virtually zero: Almost all packets run into a fade. Packets are too long
- At high bit rates, many packets can be exchanged during nonfade periods. Intuition:

Packet duration < < Av. nonfade duration

Derivation of Optimal Packet length

- Assume exponential, memoryless nonfade durations (This is an approximation: In reality many nonfade periods have duration of λ/2, due to U-shaped Doppler spectrum)
- Successful reception if
 1) Above threshold at start of packet
 2) No fade starts before packet ends

Formula:

$$P(\operatorname{succ}) = \exp\left(-\frac{1}{\eta} - \frac{T_L}{T_{NF}}\right) = \exp\left(-\frac{1}{\eta} - \frac{\sqrt{2\pi} f_D T_L}{\sqrt{\eta}}\right)$$

with T_L packet duration

- large fade margin: second term dominates:
 - performance improves only slowly with increasing η
 - Outage probability is too optimistic

Average fade duration

$$T_F = \frac{\sqrt{\eta}}{\sqrt{2\pi}} f_D \left[\exp(\eta) - 1 \right]$$

- Average fade / nonfade duration is inversely proportional to Doppler spread
- At very low fading margins, effect of the number of interfering signals *n* is significant
- Fade durations rapidly reduce with increasing margin, but time between fades increases much slower
- Experiments: For Large fade margins: exponentially distributed fade durations
- Relevant to find length of error bursts and design of interleaving