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Statistical Description of Multipath Fading

• The basic Rayleigh or Rician model gives the PDF of
envelope

• But: how fast does the signal fade?
• How wide in bandwidth are fades?

Typical system engineering questions:

• What is an appropriate packet duration, to avoid fades?

• For frequency diversity, how far should one separate

carriers?

• How far should one separate antennas for diversity?

• What is good a interleaving depth?

• What bit rates work well?

• Why can't I connect an ordinary modem to a cellular

phone?

The models discussed in the following sheets will provide

insight in these issues
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The Mobile Radio Propagation Channel

A wireless channel exhibits severe fluctuations for small
displacements of the antenna or small carrier frequency offsets.

Channel amplitude in dB versus location (= time * velocity) and
frequency
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Multipath fading is characterized by two distinct
mechanisms

1. Time dispersion
• Time variations of the channel are caused by motion of the

antenna

• Channel changes every half a wavelength

• Moving antenna gives Doppler spread

• Fast fading requires short packet durations, thus high bit rates

• Time dispersion poses requirements on synchronization and

rate of convergence of channel estimation

• Interleaving may help to avoid burst errors

2. Frequency dispersion
• Delayed reflections cause intersymbol interference

• Channel Equalization may be needed.

• Frequency selective fading

• Multipath delay spreads require long symbol times

• Frequency diversity or spread spectrum may help
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Narrowband signal (single frequency)

• Transmit:  cos(2π fc t)

• Receive: I(t) cos(2π fc t) + Q(t) cos(2π fc t)

= R(t) cos(2π fc t + φ)

I-Q phase trajectory

• As a function of time, I(t) and Q(t) follow a random

trajectory through the complex plane

• Intuitive conclusion: Deep amplitude fades coincide with

large phase rotations
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Doppler shift

• All reflected waves arrive from a different angle

• All waves have a different Doppler shift

The Doppler shift of a particular wave is

0f  =  
v

c
 cf  cosφ

• Maximum Doppler shift: fD = fc v/c

Joint Signal Model

• Infinite number of waves

• Uniform distribution of angle of arrival φ:  fΦ(φ) = 1/2π

• First find distribution of angle of arrival the compute

distribution of Doppler shifts

• Line spectrum goes into continuous spectrum
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Doppler Spectrum

If one transmits a sinusoid, what are the frequency components
in the received signal?

• Power density spectrum versus received frequency
• Probability density of Doppler shift versus received

frequency
 
 
• The Doppler spectrum has a characteristic U-shape.
• Note the similarity with sampling a randomly-phased sinusoid
• No components fall outside interval [fc- fD,  fc+ fD]
• Components of + fD or -fD  appear relatively often

• Fades are not entirely “memory-less”
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Derivation of Doppler Spectrum

The power spectrum S(f) is found from

[ ]S( f ) =  p f ( )G( ) +  f (- )G(- )  
d

df0
f 0

Φ Φφ φ φ φ φ

where

 fΦ(φ) = 1/(2π) is the PDF of angle of incidence

G(φ) the antenna gain in direction φ

p  local-mean received power

and

0 cf  =  f   1 +  
v

c
 cosφ





One finds

d

df
 =  

f (f - f )D
2

c
2

φ 1

−
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Vertical Dipole
• A vertical dipole is omni-directional in horizontal plane

• G(φ) = 1.5

We assume

• Uniform angle of arrival of reflections

• No dominant wave

Receiver Power Spectrum

S(f) =  p 
3

2

1

f - (f - f )D
2

c
2π

• Doppler spectrum is centered around fc

• Doppler spectrum has width 2 fD

Magnetic loop antenna

• G(φ) = 1.5 sin2 (φ - φ0) 

with  φ0 the direction angle of the antenna

• This antenna does not see waves from particular directions:

it removes some portion of the spectrum
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Autocorrelation of the signal 

• We know the Doppler spectrum.

But how fast does the channel change?

Wiener-Khinchine Theorem
• Power density spectrum of a random signal is the Fourier

Transform of its autocorrelation

• Inverse Fourier Transform of Doppler spectrum gives

autocorrelation of I(t) and Q(t)

Auto-covariance of received signal amplitude R2 = I2+ Q2

Derived from autocorrelation of I and Q.
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Derivation of Autocorrelation of IQ-components

We define the autocorrelation

g( ) =   I(t)I(t + ) =   Q(t)Q(t + )

  

 =  S(f) 2 (f - f )  df
c D

c D

f - f

f f

c

τ τ τ

π τ

E E

cos
+

∫

So

• Autocorrelation depends on S(f), thus on distribution of

angles of arrival

• g(τ = 0) = local-mean power:  g(0) =   I (t) =  p2E

Note that

• In-phase component and its derivative are independent

′g ( ) =   I(t)
dI

dt
 =  0τ E
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For uniform angle of arrival

The autocorrelation function is

( )g( ) =   I(t)I(t + )=  p J  2 f  0 Dτ τ π τE

where

J0 is zero-order Bessel function of first kind

fD is the maximum Doppler shift

τ is the time difference

Note that the correlation is a function of distance or time offset:

D cf   =    f
v

c
  =    

dτ τ
λ

where

d is the antenna displacement during τ, with d = v τ

λ is the carrier wavelength (30 cm at 1 GHz)
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Relation between I and Q phase

S.O. Rice: Cross-correlation

h( ) =   I(t)Q(t + ) =  -  Q(t)I(t + )

  

 =  S(f) 2 (f - f )  df
c D

c D

f - f

f f

c

τ τ τ

π τ

E E

sin
+

∫

For uniformly distributed angle of arrival φ

• Doppler spectrum S(f) is even around fc

• Crosscorrelation h(τ) is zero for all τ

• I(t1) and Q(t2) are independent

For any distribution of angles of arrival

• I(t1) and Q(t1) are independent {τ = 0: h(0) = 0}
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Autocorrelation of amplitude R2 = I2 + Q2

Derivation of ER(t)R(t + τ)
Davenport & Root showed that

 E FR(t)R(t + ) =  
2

p  -
1

2
 ,  -

1

2
 ;  1 ;  

g ( )+ h ( )

p

2 2

2
τ π τ τ











where F[ a, b, c ; d] is the hypergeometric function

Using a second order series expansion of F[ a, b, c ; d]:

E R(t)R(t + ) =  
2

 p 1 +  
1

4

g ( )

p

2

2
τ π τ











Result for Autocovariance of Amplitude

• Remove mean-value and normalize

• Autocovariance

( )  C J  2 f  D= 0
2 π τ
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Delay Profile

Typical sample of impulse response h(t)

If we transmit a pulse δ(t) we receive h(t)

Delay profile:

PDF of received power: "average h2(t)"

Local-mean power in delay bin ∆τ is  p  fτ(τ)∆τ
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RMS Delay Spread and  Maximum delay spread

Definitions

n-th moment of delay spread

n
0

n =    f ( ) dµ τ τ ττ

∞
∫

RMS value

RMS

0
2 0 2 1

2
T  =  

1
  -  

µ
µ µ µ
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Typical Delay Spreads

Macrocells TRMS < 8 µsec

• GSM (256 kbit/s) uses an equalizer

• IS-54 (48 kbit/s): no equalizer

• In mountainous regions delays of 8 µsec and more occur

GSM has some problems in Switzerland

Microcells TRMS < 2 µsec

• Low antennas (below tops of buildings)

PicocellsTRMS < 50 nsec - 300 nsec

• Indoor: often 50 nsec is assumed

• DECT (1 Mbit/s) works well up to 90 nsec

Outdoors, DECT has problem if range > 200 .. 500 m
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Typical Delay Profiles

1) Exponential

2) Uniform Delay Profile

• Experienced on some indoor channels

• Often approximated by N-Ray Channel

3) Bad Urban
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Effect of Location and Frequency

Model: Each wave has its own angle and excess delay

• Antenna motion changes phase

• changing carrier frequency changes phase

The scattering environment is defined by

• angles of arrival

• excess delays in each path

• power of each path
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Scatter function of a Multipath Mobile Channel

• Gives power as function of

Doppler Shift (derived from angle φ)

Excess Delay

Example of a scatter plot

Horizontal axes:
• x-axis: Excess delay time
• y-axis: Doppler shift
Vertical axis
• z-axis: received power
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Correlation of fading vs. Frequency Separation

• When do we experience frequency-selective fading?

• How to choose a good bit rate?

• Where is frequency diversity effective?

In the next slides, we will ...

• give a model for I and Q, for two sinusoids with time and
frequency offset,

• derive the covariance matrix for I and Q,
• derive the correlation of envelope R, 
• give the result for the autocovariance of R, and
• define the coherence bandwidth.
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Inphase and Quadrature-Phase Components

Consider two (random) sinusoidal signals

• Sample 1 at frequency f1 at time t1

• Sample 2 at frequency f2 at time t2

Effect of displacement on each phasor:
Spatial or temporal displacement:
• Phase difference due to Doppler
Spectral displacement
• Phase difference due to excess delay

Mathematical Treatment:
• I(t) and Q(t) are jointly Gaussian random processes
• (I1, Q1, I2, Q2) is a jointly Gaussian random vector
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Covariance matrix of (I 1, Q1, I2, Q2) 

1 1 2 2I ,Q ,I ,Q
1 2

2 1

1 2

2 1

 =  
p 0

0 p -

- p 0

0 p

Γ µ µ

µ µ

µ µ

µ µ

























with

1 1 2

0

2
1 2

2 2
RMS

 =  I I  =  p 
J (2

v
)

1+ 4 ( f - f ) T
µ

π
λ

τ

π
E

and

2 1 2 2 1

0

2
1 2

2 2
RMS

 =  I Q  =  - 2 ( f - f )p 
J (2

v
)

1+ 4 ( f - f ) T
µ π

π
λ

τ

π
E

where

J0 is the Bessel function of first kind of order 0.
TRMS is the rms delay spread
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Derivation of Joint Probability Density R1, R2

• Amplitude R1
2 = I1

2  + Q1
2

• Conversion from (I1, Q1, I2, Q2) to (R1, φ1, R2, φ2).

• Jacobian is J = R1 R2

• so the PDF f(r1,φ1,r2,φ2) is
r1r2 f(i1=r1cos φ1, q1=r1sinφ1, i2=r2cosφ2, q2=r2sinφ2).

Integrating over phases φ1 and φ2 gives

where

• the Bessel function I0 occurs due to ∫ exp{cosφ} dφ

• the normalized correlation coefficient ρ is

f( r ,r ) = r r

p (1 - )
- r + r

2 p(1 - )
I

r r

p(1 - )
1 2

1 2
2 2

1
2

2
2

2 0
1 2

2ρ ρ
ρ

ρ
exp



















2 1
2

2
2

2

0
2

2
1 2

2 2
RMS

 =  
+

p
 =   

J (2
v

)

1+ 4 ( f - f ) T
ρ

µ µ π
λ

τ

π
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Derivation of Envelope Correlation ER1R2

Definition:

E 1 2
0 0

1 2 1 2 1 2R R  =  r r f( r ,r ) dr dr
∞ ∞
∫ ∫

Inserting the PDF (with Bessel function) gives the

Hypergeometric integral

This integral can be expanded as

Mostly, only the first two terms are considered

E 1 2
2

R R  =  
2

 p F -
1

2
,-

1

2
;1;

π ρ





[ ]E 1 2
-2 2 -6 4 -9 6

R R  =  
2

 p 1 +  2  +  2  +  2  +...
π ρ ρ ρ
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Normalized Envelope Covariance

Definition:
• Correlation coefficient: Normalized covariance 0≤ C ≤1

1 2R R
1 2

1 2

1 2 1 2

1
2 2

1 2
2 2

2

C  =  
( r ,r )

( r ) (r )
 =  r r - r r

r - r  r - r
 =  

COV

SIG SIG

E E E

E E E E

where

• Local-mean value: ER1 = √(πp   / 2)

• Variance: VARR1 = SIG2 R1  = (2 - π / 2)p

• Correlation: ER1R2 ≈ πp  /2 [1 + ρ2 / 4]

Result

Thus, after some algebra,

1 2R ,R
2

0
2

2
1 2

2 2
RMS

C    =   
J (2

v
)

1+ 4 ( f - f ) T
≈ ρ

π
λ

τ

π

Special cases

• Zero displacement / motion: τ = 0

• Zero frequency separation: ∆f = 0
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Coherence Bandwidth

Definition of Coherence Bandwidth:

• Coherence. Bandwidth is the frequency separation for

which the correlation coefficient is down from 1 to 0.5

• Thus 1 = 2π(f1 - f2) TRMS

so Coherence Bandwidth BW = 1 (2π TRMS)

• We derived this for an exponential delay profile

Another rule of thumb:

• ISI affects BER if  Tb > 0.1TRMS

Conclusion:
• Either keep transmission bandwidth much samller than  the

coherence bandwidth of the channel, or
• use signal processing to overcome ISI, e.g.

• Equalization
• DS-CDMA with rake
• OFDM
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Duration of Fades

In the next slides we study the temporal behavior of fades.

Outline:

• #  of level crossings per second

• Model for level crossings

• Derivation

• Model for I, Q and derivatives

• Model for amplitude and derivative

• Discussion of result

• Average non-fade duration

• Effective throughput and optimum packet length

• Average fade-duration
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Gilbert-Elliot Model

Very simple mode: channel has two-states

• Good state: Signal above “threshold”, BER is virtually zero
• Poor state: “Signal outage”, BER is 1/2, receiver falls out of

sync, etc

Markov model approach:
• Memory-less transitions
• Exponential distribution of sojourn time

This model may be sufficiently realistic for many investigations
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Level crossings per second

• Av. number of crossings per sec = [av. interfade time]-1

Number of level crossing per sec is proportional to

• speed r' of crossing R (derivative r' = dr/dt)

• probability of r being in [R, R + dR]



30

Derivation of Level Crossings per Second

The expected number of crossings in positive direction per

second is [Rice]

• Random process r^ is derivative of the envelope r w.r.t.

time

• Note: here we need the joint PDF;

not the conditional PDF f(r^r=R)

+

0
N  =   r f(r,R) dr

∞
∫ � � �
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Covariance matrix of (I , Q, I^ , Q^) 

In-phase, quadrature and the derivatives are Jointly Gaussian with
I,Q,I,Q

1

1

1 2

1 2

 =  
p 0 0 b

0 p -b 0

0 -b b 0

b 0 0 b

� �Γ 























where

bn is n-th moment of Doppler spectral power density

n
n

f - f

f + f

c
n

b  =  (2 )  S(f) (f - f )  df
c D

c D

π ∫

For uniform angles of arrival

n

D
n

b  =

 p (2  f )
(n -1)!!

n!

 n 

0  n 

π for even

for odd









where (n-1)!! = 1 3 5 .....(n-1)
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Joint PDF of R, R^, Φ, Φ^

.... After some algebra ...

So

• r and r^ are independent

• phase φ is uniform

Averaging over φ and φ^ gives

• r is Rayleigh

• r^ is zero mean Gaussian with variance b2

f(r,r, , ) = r

4 pb
-
1

2
r

p
+  r

b
+  

r

b

2

2
2

2 2

2

2 2

2

� � exp
� �

φ φ
π

φ




















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Level Crossings per Second

We insert this pdf in

We find

+ D -
1

N  =  
2  f

 e
π

η η

where

η is the fade margin η = 2 p / (R0
2)

Level crossing rate has a maximum for thresholds R0 close to

the mean value of amplitude

Similarly for Rician fading

+
D R 0N  =  p f  f ( R )π

+

0
0N  =   r f(r,R = R ) dr

∞
∫ � � �
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Average Fade / Nonfade Duration

• Fade durations are relevant to choose packet duration

• Duration depend on

• fade margin γ = 2 p / R0
2

• Doppler spread

Average fade duration TF

− ≤N  T  =  (R R )F 0Pr

Average nonfade duration TNF

+
NF 0N  T  =  (R R )Pr ≥
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Average nonfade duration

NF

-
1

D -
1

D

T  =  
e

2  f
 e

 =  
2  f

η

η
π

η

η
π

• Average nonfade duration is inversely proportional to

Doppler spread

• Average nonfade duration is proportional to fade margin
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Optimal Packet length

We want to optimize
 #User bits
 Effective throughput =  --------------  Probability of success
 #Packet bits

This gives a trade off between
• Short packets: much overhead (headers, sync. words etc).
• Long packets: may experience fade before end of packet.

• At 1200 bit/s, throughput is virtually zero: Almost all packets
run into a fade. Packets are too long

• At high bit rates, many packets can be exchanged during non-
fade periods.  Intuition:

Packet duration < < Av. nonfade duration
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Derivation of Optimal Packet length

• Assume exponential, memoryless nonfade durations
 (This is an approximation: In reality many nonfade periods

have duration of λ/2, due to U-shaped Doppler spectrum)
 
• Successful reception if

1) Above threshold at start of packet
2) No fade starts before packet ends

Formula:

P succ exp exp( ) =  -
1

- T

T
 =  -

1
-

2 f TL

NF

D L

η η
π

η














with TL packet duration

• large fade margin: second term dominates:
• performance improves only slowly with increasing η
• Outage probability is too optimistic
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Average fade duration

F
D

T  =  
2  f

 [ ( ) -1]
η

π
ηexp

• Average fade / nonfade duration is inversely proportional to
Doppler spread

• At very low fading margins, effect of the number of
interfering signals n is significant

• Fade durations rapidly reduce with increasing margin, but
time between fades increases much slower

• Experiments:  For Large fade margins: exponentially
distributed fade durations

• Relevant to find length of error bursts and design of
interleaving


