

Broadband Wireless Communication

imec

The world is going wireless !

Enterprise WLAN

Wireless home gateway

Wireless personal network

- Wireless LANs
 experience a growing success in enterprises.
- Wireless home gateways are the missing piece in fast internet and video access.
- Wireless personal networks will open new service opportunities
 © imec 2001

Wireless Requirements

- ⊳ Cost < 10\$
- ▷ Power consumption < 100 mW</p>
- Network capacity > 100 Mbps
- ⊳ Range > 50 m
- IMEC's Mission: "To enable low cost and low power integrated solutions for the next generation broadband communication networks"

Long term strategy executed in a phased approach

enterprise WLAN	home gateway with extended range and capacity	high datarate terminals MIMO
OFDM	Turbo coding SDMA QoS MAC 5 GHz FE SIP	personal area network Scalability SIP
phase 1	phase 2	phase 3 © imec 2001

OFDM Modem Architecture

Improved equalizer for better performance with QAM

QAM64 BER performance

Second generation OFDM Modem

- ▷ 0.18m CMOS 5LM
- ⊳ 20MHz
- ▷ 160 PQFP
- ▷ 431 kgates
- ⊳ 19 RAMs
- ⊳ 20.8mm2
- ⊳ **Ptx = 199mW**
- ⊳ **Prx = 212mW**

Wireless set-up at 5.2 GHz

Long term strategy executed in a phased approach

enterprise WLAN	home gateway with extended range and capacity	high datarate terminals MIMO
OFDM	Turbo coding SDMA QoS MAC 5 GHz FE SIP	personal area network Scalability SIP
phase 1	phase 2	phase 3 © imec 2001

IMEC's solution: WLAN-in-apackage

System model includes 4 most important front-end impairments

PA can be operated with only 15 dB back-off (IIP3 - Pin)

Phase noise must be K<-32dBc for a Lorentzian model

Demonstrator: Single-package 5 GHz receiver RF module

5 GHz WLAN

Two 5 GHz MCM Bandpass Filters

LNA with bare die pHEMT transistor (EC2612)

GaAs (pHEMT) bare die downconversion mixer (TGC1411)

Single-package 5 GHz receiver RF module

Mixer: conv. gain: 15 dB power: 25 mA @ 3V

BPF-LNA-BPF-mixer: gain: 22.4 dB NF: 7.8 dB P-1dB: -25 dBm (input) size: 6.5 x 7 mm²

Co-Design of ASIC and MCM allows optimal trade-offs

Better VCO performance with high-Q MCM passives

3 versions with constant output power

Vcc Bias	inductors	varactors	phase noise (dBc/Hz @ 100 kHz)	Power (mW)	FOM
Out1 Out2	on-chip Q=5.5	on-chip Q=17	-86	17.8	167
	MCM Q=50	on-chip Q=17	-90	9.5	173.7
	MCM Q=50	off-chip Q=40	-92	7.9	176.5
■ Tuning ■ (simulated response)			l results)		
$S_{\Phi} \mu \frac{1}{Q^2} \times \underbrace{\overset{\text{af}}{\overset{\text{osc}}{\overset{\text{osc}}{\overset{\text{i}}{\overset{\text{o}}{\overset{\text{i}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}{\overset{\text{o}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}{\overset{\text{o}}{\overset{\text{o}}{\overset{\text{o}}}{\overset{\text{o}}{\overset{\text{o}}}}}}}}}}$					

4.7 GHz VCO with MCM-D inductors

Complete RF Transceiver in a single package

Size: 16 x 16 mm2

Next step: from antenna to DC in a single package

- Direct downconversion
- Polar upconversion
- **> power amp in the package**
- ⊳ eventually, antenna in the package

Transmitter architecture exploration

Polar upconversion

Single-package implementation and demonstration

Long term strategy executed in a phased approach

enterprise WLAN	home gateway with extended range and capacity	high datarate terminals MIMO
OFDM	Turbo coding SDMA QoS MAC 5 GHz FE SIP	personal area network Scalability SIP
phase 1	phase 2	phase 3 © imec 2001

Turbo Decoding Scheme

- $\triangleright \quad \text{Iterative decoding:} \quad D1 \ \ B \ \ D2 \ \ B \ \ D1 \ \ B \ \ D2 \ \ B \ \ldots$
- ▷ A decoder module (*D*) for each encoder (*C*)
- Increasingly good solution:

closer to maximum likelihood decoding

Turbo coding significantly improves performance

Systematic memory optimizations reduce power consumption

- Systematic optimization improves:
 - power
 - decoding delay
 - data rate
- At the cost of area

Spatial Division Multiple Access (SDMA)

wired backbone

- Improves bandwidth efficiency. System capacity increases with number of antennas
- By exploiting spatial diversity
- Antenna array processing at basestation for Tx and Rx
- OFDM reduces the complexity of baseband
 SDMA processing

OFDM / SDMA Architecture with Per-carrier Processing

OFDM/SDMA Multiplies **Network Capacity**

Multimedia home gateway requires a QoS MAC

Long term strategy executed in a phased approach

enterprise WLAN	home gateway with extended range and capacity	high datarate terminals MIMO
OFDM	Turbo coding SDMA QoS MAC 5 GHz FE SIP	personal area network Scalability SIP
phase 1	phase 2	phase 3 © imec 2001

Wireless Personal Network enables new applications

Multiple Antennas : Scalability of Link Capacity

 $n_T x n_R$ channels

Total Transmitted power is the same

Link Capacity x n © imec 2001

SC-CP offers OFDM performance with low PAPR

Scalability with Hybrid OFDM

Substrate noise coupling is a problem for integrated radio's

Substrate noise spectral peaks 40 dB larger than noise floor

Applying the analysis to the WLAN OFDM baseband chip

- Mixed-signal IC in
 0.35 um digital
 CMOS
- embedded 8-bit
 ADC
- digital up/downconverter and complex filter
- ▷ WLAN modem
- > noise sensors

Our Goals

Mid term goals:

- demonstrate a high performance wireless home gateway: turbo coding, SDMA, QoS MAC.
- Demonstrate an integrated 5GHz front-end.
- Long term goals:
 - single-package radio for personal area networks.
 - High datarate multi-antenna terminals.