Multipath Propagation II

Properties of the signal envelope

Before we can derive properties of the Rayleigh-fading envelope ρ, with $\rho^{2}=I^{2}+Q^{2}$, we need to express correlation functions of the inphase and quadrature components $I(t)$ and $Q(t)$. Rice derived the autocorrelation $g(\tau)$ defined as

$$
\begin{aligned}
g(\tau) & =\text { ' } \operatorname{E} I(t) I(t+\tau)=\mathrm{E} Q(t) Q(t+\tau) \\
& =\int_{f_{C}-f_{D}}^{f_{C}+f_{D}} S(f) \cos 2 \pi\left(f-f_{c}\right) \tau d f
\end{aligned}
$$

with $S(f)$ the power spectral density of the RF-signal. In the special case of uniform angles of arrival, the cross correlation $h(\tau)$, with

$$
\begin{aligned}
h(\tau) & =\mathrm{E} I(t) Q(t+\tau)=-\mathrm{E} Q(t) I(t+\tau) \\
& =\int_{f_{C}-f_{D}}^{f_{C}+f_{D}} S(f) \sin 2 \pi\left(f-f_{c}\right) \tau d f
\end{aligned}
$$

is identical to zero for E_{z}, H_{x} and H_{y}. The behavior of the correlations at $\tau=0$ can be obtained from the moments of the power spectrum

$$
b_{n}=(2 \pi)^{n} \int_{f_{C}-f_{D}}^{J_{C} \cdot J_{D}} S(f)\left(f-f_{c}\right)^{n} d f .
$$

For E_{z}, one finds $b_{n}=0$ for n is odd and

$$
b_{n}=b_{o}\left(2 \pi f_{D}\right)^{n} \frac{(n-1)!!}{n!}
$$

where $(n-1)!!=1 \cdot 3 \cdot 5 \ldots(n-1)!$ for n is even. In particular $b_{o}=1.5 \bar{p}=\frac{3^{\prime} \mathrm{E}_{o}^{2}}{4}$ with p the local-mean power for an isotropic antenna. Hence,

$$
\begin{aligned}
& \mathrm{E} I^{2}=\mathrm{E} Q^{2}=g(0)=b_{九} \\
& \mathrm{'} \frac{d I}{d t} I=g^{\prime}(0)=0 \\
& \mathrm{E}\left(\frac{d I}{d t}\right)^{2}=-g^{\prime \prime}(0)=b_{2}
\end{aligned}
$$

The autocorrelation $g(\tau)$ is $g(\tau)=b_{o} J_{o}\left(2 \pi f_{D} \tau\right)$ with J_{o} the Bessel function of zero order[]. Davenport and Root [] expressed the autocorrelation of the envelope in terms of a hypergeometric function, namely

$$
R_{\rho}(\tau)=\frac{\pi}{2} b_{o} F\left[-\frac{1}{2},-\frac{1}{2} ; 1 ; \frac{g^{2}(\tau)+h^{2}(\tau)}{b_{o}^{2}}\right]
$$

For $h(\tau) \equiv 0$, a first order expansion of F in terms of $g(\tau)$ gives $R_{\rho}(\tau) \approx \frac{\pi}{2}\left[b_{o}+\frac{1}{4} \frac{g^{2}(\tau)}{b_{o}^{2}}\right]$.

Exercise Verify that this approximation gives 'E $\rho^{2}(0) \approx \frac{5 \pi}{8} b_{o}$ which is very close to theoretical $2 b_{o}$.

Removing the mean amplitude ' $\mathrm{E} \rho=\sqrt{\frac{\pi b_{o}}{2}}$, the autovariance is found as
$C_{\rho}(\tau)=R_{\rho}(\tau)-$ ' ρ where, for the field components

$$
\begin{array}{ll}
E_{z}: & \mathrm{C}_{\rho}(\tau)=\frac{\pi}{8} b_{o} J_{o}^{2}\left(2 \pi f_{D} \tau\right) \\
H_{x}: & \mathrm{C}_{\rho}(\tau)=\frac{\pi}{8} b_{o H}\left[J_{o}\left(2 \pi f_{D} \tau\right)+J_{2}\left(2 \pi f_{D} \tau\right)\right]^{2} \\
H_{y}: & \mathrm{C}_{\rho}(\tau)=\frac{\pi}{8} b_{o H}\left[J_{o}\left(2 \pi f_{D} \tau\right)-J_{2}\left(2 \pi f_{D} \tau\right)\right]^{2}
\end{array}
$$

with $b_{o H}$ the local-mean output power of a (magnetic) loop antenna $\left(b_{o H}=\frac{3^{\prime} \mathrm{E}_{o}^{2}}{8}=\frac{b_{o}}{2}\right)$.

The power spectral density $S_{\rho}(f)$ of the envelope is found from the Fourier transform

$$
\begin{aligned}
S_{\rho}(f) & =\frac{\pi}{2} b_{o} \int_{-\infty}^{\omega} R_{\rho}(\tau) \mathrm{e}^{-j 2 \pi f \tau} d \tau \\
& \approx \frac{\pi}{2} b_{o} \delta_{\rho}(f)+\frac{\pi}{\delta b_{o}} \int_{-\infty}^{\infty}\left(g^{2}(\tau)+h^{2}(\tau)\right)^{\prime} \mathrm{e}^{-j 2 \pi f \tau} d \tau
\end{aligned}
$$

Expressing the autocorrelation $g(\tau)$ and $h(\tau)$ of the inphase and quadrature components in terms of the power spectral density $S(f)$ of the received signal, we find [Jakes] for positive frequencies $\left(0 \leq f \leq 2 f_{m}\right)$

$$
S_{\rho}(f)=\frac{\pi}{2} b_{o} \delta(f)+\frac{1}{16 b_{o}} \int_{f_{c}-f_{m}}^{J_{c}+J_{m}-\jmath} S(x) S(x+f) d x
$$

It follows that the spectrum of the envelope contains frequencies up to twice the maximum Doppler shift. A mathematical explanation of this is the convolution in frequency domain resulting from the squaring-operation in expression () for the autocorrelation of the envelope.

Exercise Draw a phasor diagram of two interfering waves. Show how the phase and amplitude of the phasor sum can change rapidly even for modest changes of the individ-
ual components.

For the electric field component ${ }^{\prime} \mathrm{E}_{z}$, the spectrum of the envelope is

$$
S_{\rho}(f)=\frac{b_{o}}{8 \pi f_{D}} K\left(\sqrt{1-\left(\frac{f}{2 f_{D}}\right)^{2}}\right)
$$

with K the elliptic integral of the first kind with $K(m)=\int_{0}\left(1-t^{2}\right)^{-1 / 2}\left(1-m t^{2}\right)^{-1 / 2} d t[]$.

Exercise If a dominant wave arrives from angle α_{o}, the received signal power spectrum is $S(f)=S_{o}(f)+B \delta\left(f-f_{C}-f_{D} \cos \alpha_{o}\right)$. Find the spectrum of the resulting envelope. Explain why the new spectrum is still band limited to $2 f_{D}$, but contains discontinuities or peaks at $f_{D} \pm f_{D} \cos \alpha_{o}$.

Derivatives of amplitude and phase

In a Rician-fading channel with zero line-of-sight amplitude $\left(c_{o}=0\right)$, the inphase and quadrature component and their derivatives are zero-mean jointly Gaussian. The covariance matrix of I_{o}, Q_{o}, I_{o}, and Q_{o} is

$$
c=\left|\begin{array}{cccc}
b_{o} & 0 & 0 & b_{1} \\
0 & b_{o} & -b_{1} & 0 \\
0 & -b_{1} & b_{2} & 0 \\
b_{1} & 0 & 0 & b_{2}
\end{array}\right|,
$$

where b_{n} is the nth moment of the Doppler spectrum of the scattered power. The determinant of this matrix is $\left(b_{o} b_{2}-b_{1}^{2}\right)^{2}$.

Exercise \quad Find the inverse of c and give the joint pdf of I_{o}, Q_{o}, I_{o}, and Q_{o}.

Rice [] expressed the pdf of $\rho, \dot{\rho}, \theta$ and $\dot{\theta}$ by transformation of random variables. For a Ricianfading signal with nonzero line-of-sight component, thus with $c_{o} \neq 0$, one can write

$$
\begin{aligned}
I_{o} & =\rho \cos \theta-c_{o} \\
Q_{o} & =\rho \sin \theta \\
I_{o} & =\dot{\rho} \cos \theta-\rho \dot{\theta} \sin \theta \\
\operatorname{and} Q_{o} & =\dot{\rho} \sin \theta+\rho \dot{\theta} \cos \theta
\end{aligned}
$$

Hence, $d I_{o} d Q_{o} d I_{o} d Q_{o}=\rho^{2} d \rho d \dot{\rho} d \theta d \dot{\theta}$. After some algebraic operation, this leads to

$$
\begin{aligned}
f(\rho, \dot{\rho}, \theta, \dot{\theta}) & =\frac{\rho^{2}}{4 \pi\left(b_{o} b_{2}-b_{1}{ }_{1}\right)} \exp -\left\{\frac { 1 } { 2 b _ { o } b _ { 2 } - 2 b _ { 1 } ^ { 2 } } \left[b _ { 2 } \left(\rho^{2}-2 c_{o} \rho \cos \theta\right.\right.\right. \\
& \left.\left.\left.+Q^{2}\right)+b_{o}\left(\dot{\rho}^{2}+\rho^{2} \dot{\theta}^{2}\right)-2 b_{1} \rho^{2} \dot{\theta}+2 b_{1} c_{o}(\dot{\rho} \sin \theta+\rho \dot{\theta} \cos \theta)\right]\right\}
\end{aligned}
$$

This general result is relevant to a number of more specific properties to be derived later.
Exercise Find $f(\rho, \dot{\rho})$ for Rayleigh-fading $\left(c_{o}=0\right)$. Give an intuitive explanation why $\dot{\rho}$ is normal. Find the variance of $\dot{\rho}$.

Threshold crossing rate

The level crossing rate $M_{\rho_{o}}$ is defined as the expected number of times that the envelope ρ crosses in positive direction a particular level ρ_{o} during one second. Given a particular derivative $\dot{\rho}_{o}\left(\dot{\rho}_{o}>0\right)$ of the envelope, the duration Δt of a transition through the range $\rho_{o} \leq \rho \leq \rho_{o}+\Delta \rho$ is $\Delta t=\frac{\Delta \rho}{\dot{\rho}_{o}}$. The conditional expectation of the number of crossings per second is

$$
\begin{aligned}
\mathrm{E}\left[M_{\rho_{o}} \mid \dot{\rho}_{o}\right] & =\frac{1}{\Delta t} \operatorname{Pr}\left(\left(\rho_{o}<\rho<\rho_{o}+\Delta \rho \mid \dot{\rho}_{o}\right)\right. \\
& =\frac{1}{\Delta t} \frac{f_{\rho, \dot{\rho}}\left(\rho_{o}, \dot{\rho}_{o}\right) \Delta \rho}{f_{\dot{\rho}}\left(\dot{\rho}_{o}\right)}
\end{aligned}
$$

Averaging this over $\dot{\rho}$, we find the result $M_{\rho_{o}}=\int_{0}^{\omega} \dot{\rho} f_{\rho, \dot{\rho}}\left(\rho_{o}, \dot{\rho}_{o}\right) d \dot{\rho}$ which was first used by Rice []. For our case $b_{1}=0$, the joint pdf of the amplitude and phase and corresponding derivatives is

$$
f(\rho, \dot{\rho}, \theta, \dot{\theta})=\frac{\rho^{2}}{4 \pi^{2} b_{o} b_{2}} \exp \left[-\frac{1}{2}\left(\frac{\rho^{2}}{b_{o}}+\frac{\dot{\rho}^{2}}{b_{2}}+\frac{\rho^{2} \dot{\theta}^{2}}{b_{2}}\right)\right]
$$

Unconditioning on $\theta(0<\theta<2 \pi)$ and $\dot{\theta}(-\infty<\dot{\theta}<\infty)$ shows that, for Rayleigh-fading, $\dot{\rho}$ is zero-mean Gaussian with variance $b_{2}=2 \pi^{2} f_{D}^{2} b_{o}$ independent of ρ. The fade margin η is defined as the ratio of the local mean power b_{o} and the power $\frac{1}{2} \rho_{o}^{2}$ corresponding to the threshold ρ_{o}, thus $\eta=\frac{2 b_{o}}{\rho_{o}^{2}}$ and

$$
M=\frac{\sqrt{2 \pi} f_{D}}{\sqrt{\eta}} \mathrm{e}^{-1 / \eta}
$$

More in general, for Rician fading, the level crossing rate becomes [Rice, '45]

$$
M_{\rho_{o}}=\sqrt{\pi} f_{D} \sqrt{b_{o}} f_{\rho}\left(\rho_{o}\right)
$$

where b_{n} is the nth moment of the Doppler spectrum of the scattered power only.

Exercise Assume Rician fading with $k » 0$, so $\rho \approx c_{o}+I$. Show that $M_{\rho_{o}} \approx \frac{1}{2 \pi} \sqrt{\frac{b_{2}}{b_{o}}} \exp \left\{-\frac{\left(\rho-c_{o}\right)^{2}}{2 b_{o}}\right\}$.

In interference-limited nets, the Rayleigh-fading wanted signal often experiences interference from multiple, say n, i.i.d. Rayleigh-fading other signals. The rate of crossing a C/I-threshold z is addressed. The local fade-margin η is $\eta=\frac{p_{o}}{z \bar{p}_{t}}$ where p_{t} is the joint local-mean interference power $p_{t}=p_{1}+p_{2}+\ldots+p_{n}$. Assuming incoherent (power) cummulation of interference, the joint interfering signal has a Nakagami envelope ρ_{t}, with $\rho_{t}^{2}=\sum_{i=1} \rho_{i}^{2}$. Given the instantaneous amplitude $\rho_{1}, \rho_{2}, \ldots \rho_{n}$, the derivative $\dot{\rho}_{t}$ is Gaussian with

$$
\dot{\rho}_{t}=\frac{\sum_{i=1} \rho_{i} \dot{\rho}_{i}}{\rho_{t}}
$$

If all interfering signals have the same Doppler spectrum, the variance of $\dot{\rho}_{t}$ is $\sigma_{t}^{2}=2 \pi^{2} f_{D}^{2} b_{o}$. We now express the pdf of the signal-to-interference amplitude ratio $y\left(y^{2}=\frac{\rho_{o}^{2}}{\rho_{t}^{2}}\right)$ and its derivative \dot{y} in terms of the mutually independent pdfs of $\rho_{o}, \dot{\rho}_{o}, \rho_{t}$, and $\dot{\rho}_{t}$.

Since $\rho_{o}=\rho_{t} y$, we find $\dot{\rho}_{o}=\dot{y} \rho_{t}+\dot{\rho}_{t} y$. So,

$$
f_{y, \dot{y}}\left(y_{o}, \dot{y}_{o}\right)=\int_{o o o}^{\infty} \int_{o}^{\infty} \rho_{t} f_{\rho_{o}}\left(\rho_{t} y\right) \underbrace{\dot{\rho}_{o}}_{\text {Rayleigh }}(\dot{y} \underbrace{}_{\text {Gaussian }}+\dot{\rho}_{t} y) \underbrace{f_{\rho_{t}}\left(\rho_{t}\right)}_{\text {Nakagami }} \underbrace{f_{\dot{\rho}_{t}}\left(\dot{\rho}_{t}\right) d \dot{\rho}_{t} d \rho_{t}}_{\text {Gaussian }}
$$

After some algebraic manipulations, one finds the threshold crossing rate

$$
M=\sqrt{2 \pi} f_{D} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\sqrt{n} \Gamma(n)} \sqrt{\eta}\left(1+\frac{1}{n \eta}\right)^{-n}
$$

where $\Gamma(n)=(n-1)!$ is the gamma function. The factor

$$
\chi=\frac{\sqrt{\eta} \Gamma(n)}{\Gamma\left(n+\frac{1}{2}\right)} \approx 1+\frac{1}{8 n}+\ldots
$$

varies between $\chi=\frac{2}{\sqrt{\pi}} \approx 1.13$ for $n=1$ and $\chi \downarrow 1$ for $n \rightarrow \infty$.

Exercise \quad Show that for $n \rightarrow \infty$, the level crossing rate () is recovered.

Outage probability

An RF signal outage is the event that the signal-to-joint-interference ratio drops below minimum required threshold during a short-term observation window T. The duration T is chosen such that multiple interfering signals add incoherently, i.e., T is much larger that the coherence time of the modulation. Also T is small compared to the effects of fading ($T f_{D}<1$). The probability that the C / I-ratio is above the threshold z is

$$
\begin{aligned}
\mathrm{P}\left(\frac{p_{o}}{p_{t}}>z\right) & =\int_{o-z x}^{\omega} \int_{p_{o}}^{\omega} f_{p^{o}}(y) f_{p_{t}}(x) d y d x \\
& =\int_{o}^{\infty} F_{p_{o}}(z x) f_{p_{t}}(x) d x
\end{aligned}
$$

For a Rayleigh-fading wanted signal, the (cumulative) distribution is the exponential function $\exp \left(-\frac{x z}{\overline{p_{o}}}\right)$. So, the expression can be interpreted as the Laplace Transform of the pdf of joint interference power. For n i.i.d. incoherently cumulating Rayleigh-fading signals each with localmean power p, we find

$$
\mathrm{P}\left(\frac{p_{o}}{p_{t}}>z\right)=\left(\frac{1}{\frac{z \bar{p}}{\bar{n}_{n}}+1}\right)^{\prime \prime}=\left(1+\frac{1}{n \eta}\right)^{-n}
$$

Exercise Study the special cases $n=1$ and $n=\infty$. Explain why the distribution of p_{o} is recovered for $n \rightarrow \infty$. For decreasing fade margins $\frac{1}{\eta} \rightarrow \infty$, the probability of successful reception vanishes slowly if $n=1$ but rapidly if $n \rightarrow \infty$. Why?

Average (non-) fade duration

The probability of a signal outage $(\mathrm{C} / \mathrm{I}<\mathrm{z})$ should be equal to the threshold crossing rate multiplied by the average duration of a fade. Hence, for a wanted Rayleigh-fading signal in the presence of Nakagami interference, the average nonfade duration $\bar{\tau}_{M F}$ is

$$
\bar{\tau}_{M F}=\frac{\mathrm{P}\left(\frac{p_{o}}{p_{t}}>z\right)}{M}=\frac{1}{\sqrt{2 \pi} f_{D}} \sqrt{\eta} \frac{\sqrt{\eta} \Gamma(n)}{\Gamma\left(n+\frac{1}{2}\right)}
$$

and the average fade duration is

$$
\bar{\tau}_{F}=\frac{1}{\sqrt{2 \pi} f_{D}} \sqrt{\eta}\left[\left(1+\frac{1}{n \eta}\right)^{n}-1\right] \frac{\sqrt{\eta} \Gamma(n)}{\Gamma\left(n+\frac{1}{2}\right)}
$$

Exercise \quad Show that for the event of a noise-limited channel with minimum required signal power $p_{m}, \bar{\tau}_{N F}=\frac{\sqrt{ } \eta}{\sqrt{2 \pi} f_{D}}$ and $\bar{\tau}_{F}=[\exp (\eta)-1] \frac{\sqrt{ } \eta}{\sqrt{2 \pi} f_{D}}$ with $\eta=\frac{p_{o}}{p_{m}}$.

