Presentation Outline

- Historical Overview
- Radio Fundamentals
- US Developments in PCS
- Mobile Data
- Satellite Systems
- Problems with existing schemes
- Wireless Overlay Networks
- US Government Research Initiatives

Today's State-of-the-Art

Military and civilian need for global, robust, reliable, high performance, secure Information Infrastructure, with rapid deployment and mobile operation

- System architecture focuses on narrow-bandwidth voice, not flex bandwidth data communications
 - sophisticated variable bit rate voice encoders
 - channel versus packet architectures
- No end-to-end architectures
 - CDPD between mobile host and base station, but what gateways will exist?
- No effective method for applications to negotiate with network for level of service

Technology Opportunity

- Widespread availability of low-power, lowcost, small size digital radio technology
- Ubiquitous satellites ranging in power and bandwidth
- Emergence of highly capable, portable computing environment (PDA's)
- Widespread deployment of Internet, ATM, and other information infrastructure
- Widespread commercial availability of system components

Paradigm Shifts

- Small lightweight "intelligent" digital radios
 - "Low cost" packet radio, circa 1984: 25 lbs, 110 W, 9.3" by 6.1" by 13.4"
 - Packet radio today: AT card, < 1 lb, 1 W</p>
 - Tomorrow: PCMCIA card, < 4 oz, 0.1 W
- New gen radios: control "knobs" exposed to apps
 - transmit power, channel quality, network routing, mobile assisted handoff, etc.
- Extend technology for disconnected access to "gracefully degrading" connections
 - CODA, Ficus

Extension of wireline networking infrastructure

Government Program Focus

- Integrated end-to-end networking technology
- Wireless networking architectures/protocols
- Untethered node architectures
- Mobile robust computing techniques

Integrated End-to-end Networking

Mobile Command Center

Expected results:

- Protocols and algorithms for movement between wireless domains
- Bandwidth-adaptive end-to-end application support
- Opportunistic exploitation of communications
- Demonstrated end-to-end application

Wireless Networking Architectures

Expected Results:

- Support for movement within wireless domain
- New location-adaptive protocols
- Self-organizing network architecture/algorithms

- Use packet radio as initial demo
- Investigate wireless ATM, data on cellular, etc.

Untethered Node Architectures

Leverage Microsystems Design & Component Technology to Provide Scalable, Adaptable, Untethered Systems Building Blocks Supporting ARPA Global Mobile Goals

Applications	Mobile Computing Global Mobile Access Wi	Video Conferencing ireless Networking TIA
Node Architectures	Mobile Computing NodesMiniature Modular Untethered SystemsPacket Radio System Nodes	
Microsystems Design Components	Video Compression ICs Mod Wireless Systems Design Environment	em ICs Adaptive Signal Processing ICs Spread Spectrum ICs

Techniques for Mobile Robust Computing

- Consistent, robust services in presence of
 - Dynamically varying bandwidth
 - Changing location (addresses)
 - Sporadic connectivity
 - Loss of server nodes

• Possible Techniques

- Migratable computing
- Distributed replication of data
- Global virtual address space (e.g., Virtual IP)
- Softly degradable application support

Intended Program Results Broad Technology Base for Mobile Computing

- Nodes for Untethered Networks
 - Rich Interfaces for Adaptive Control
 - Adaptive Behavior for Varying Environment
 - Modular
- Architectures for Robust Wireless Networks
 - Self-configuring
 - Effective bandwidth utilization
 - High performance services

Program Results Broad Technology Base for Mobile Computing

- Protocols for End-to-End Networking
 - Mobility support within and between regions
 - End-to-end resource utilization
 - API for performance negotiation

• Global, Mobile Computing Services

- API for performance negotiation-graceful degradation
- Distributed/disconnected file service
- Global virtual address space
- Migratable, survivable compute services

Government Opportunity

Shift industrial paradigm from piecewise solutions to end-to-end information systems

- Develop technology for robust end-to-end information systems in a global, mobile environment.
- Demonstrate in realistic applications
 environment

Strategic Directions

- Combine wireless network technology with information infrastructure architecture supporting mobility
- Order of magnitude improvement in end-to-end bandwidth to applications "on the move"
- API for developing location-dependent and situationaware applications
- Support at the network protocol, file system, distributed system
- Integrate new electronic component technologies emerging (displays, mmic, low power) into system context

 Applications drawn from systems offices, NII national challenges

Summary

- Demonstrate high bandwidth wireless networking infrastructure, system services, and locationdependent applications
- Distributed computing in untethered environment:
 - Public safety, law enforcement, emergency medical teams, disaster response, military ops
 - Intelligent Vehicle Highway Systems, transportation, mapping, location finding
 - Smart buildings: people and item tracking, energy management
 - Where tethering is too restrictive, e.g., repair in hostile, hard to reach places

