

Array Signal Processing for Cellular CDMA Mobile Communications

Peter M. Grant

Professor of Electronic Signal Processing

The University of Edinburgh

Scotland

Email: pmg@ee.ed.ac.uk

http://www.ee.ed.ac.uk/~profiles/sas/

Contents

- 1. Introduction
- 2. Array processing
- 3. CDMA and multipath
- 4. Uplink basestation array processing
- 5. Simulation studies
- 6. Conclusions

Array Processing

Null Steering: Widrow 1967
 Applebaum 1976
 Gabriel 1976
 Compton 1979

- Military Applications: Jammer Reduction
- Cellular Systems: Interference Reduction
 J. Winters (Bell Labs) 1980-90s
 A. Paulraj (Stanford University) 1990s

Current Cellular System Design

Dual diversity is used on uplink; single antenna system on downlink; typically 120° sectorisation.

Spatial Channel Modelling

- Local reflectors at mobile: nearby buildings cause reflections with small time delays.
- Further out reflectors: major obstacles give rise to specular multipath components with large delays and angle spreads.
- Reflectors at base station: buildings near cell site may give rise to additional reflection/diffraction effects.

Rayleigh Fading

 Received power profile for a moving vehicle in a Rayleigh fading multipath channel.

Multipath Dispersion

 Power delay profiles for suburban sites in Edinburgh: (a) single component (b) series of components (after Ward).

Other Channel Effects

- **1. Frequency dispersion** due to motion of mobile.
- Classical Doppler model frequency profile for unmodulated carrier:

2. Multipath Angular width

 Determines antenna spacing to obtain space diversity

Typical Multipath Channel

 Example scattering map showing received signal power in delay and angle of arrival (after Ward).

Direct-Sequence CDMA

- 1. All users are accommodated in the same RF frequencies.
- 2. Each user is identified by a different binary spreading code.
- 3. Capability to resolve multipath energy.
- 4. Transmissions are asynchronous on the *uplink*, but synchronous on the *downlink*.
- 5. Power control is needed on the *uplink* to mitigate the near–far problem.
- 6. Capacity is limited by multiple—access interference from other users.

Direct Sequence Modulation

• Bandwidth Spreading:

Processing Gain $W = T_s/T_c$.

Code Correlation Functions:

- (a) Cross-correlation function with data and
- (b) Cross-correlation between subscribers.

Obtaining Diversity

Obtain multiple independent copies of transmitted signal to reduce probability of deep fades. Sources of diversity gain:

Multipath Diversity:

 Code correlation function can permit multipath energy to be resolved at different delays.

Coding/Interleaving:

 Interleaving codeword bits at the transmitter can exploit Doppler fast fading.

Space Diversity:

 Employ widely spaced antennas to obtain uncorrelated fading.

Antenna Arrays and Diversity

Exploit diversity gain and interference suppression to:

- 1. Improve system capacity
- 2. Increase range and coverage of the cell
- 3. Improve link quality

CDMA Capacity Issues

- Multiple users on same RF bandwidth, different CDMA codes.
- Power control required to prevent near—far effect.
- Uplink: Users operate asynchronously codes cannot be made orthogonal. All users in system cause interference.
- Downlink: Same cell users are synchronous – codes can be orthogonal. Other cells cause interference.
- System capacity is limited by other user interference

Antenna Arrays

- 1. Employ M antenna elements.
- 2. "Narrowband" model is assumed time delays modelled as phase shifts.
- 3. Use uniform linear array (ULA) geometry.

4. The "steering vector" for $d = 0.5\lambda$:

$$a(\theta) = [1, \exp\{j\pi\cos(\theta)\}, \dots \exp\{j(M-1)\pi\cos(\theta)\}]^T$$

Array Beam Patterns

• Array Spacing $d = 0.5\lambda$:

• Array Spacing $d = 2.0\lambda$:

The Uplink

CDMA uplink channel characteristics:

- 1. Multipath dispersion in time.
- 2. Fast fading effects.
- 3. Angular spread of energy.
- 4. Multiple access interference.

Base station receiver requirements:

- 1. Combine signal energy in time and space.
- 2. Track rapid channel variations.

Uplink Channel Modelling

- In a urban environment, multipath propagation leads to Rayleigh fading of the signal power over time.
- 2. If the code chip period T_c < delay spread T_d , can resolve multiple channel taps.
- 3. Antenna array simulations must model required angle of arrival θ and angular width Δ for each channel tap.

(i) Multipath profile (ii) spatial tap model.

"Smart" Antenna

Uplink CDMA Receiver Structure

The "Space-Time" combiner:

 The receiver algorithm chooses weights to optimally combine signal energy in space and at different time delays.

User Distribution Effects

- 1. Perform studies of three scenarios to assess the effect of different user locations in a cell.
- 2. Each user has the following five multipath tap, Rayleigh fading channel:

$$H(z) = 1 + 0.5z^{-1} + 0.25z^{-2} + 0.125z^{-3} + 0.06225z^{-4}$$

- 3. The system uses DPSK modulation and has a CDMA processing gain W = 127.
- 4. The locations of all users' multipaths are known perfectly; the 2D-RAKE receiver is used to combine the multipath energy.
- 5. Bit error ratio curves calculated for 15 user case, with different array sizes M.

Good User Layout Example

• Layout of user & interferers:

Resulting bit error ratio curves:

Bad User Layout Example

• Layout of user & interferers:

Resulting bit error ratio curves:

Typical User Layout Example

• Layout of user & interferers:

Resulting bit error ratio curves:

TDMA Array Processing

- Simultaneous user transmissions in single timeslot
- Conventionally require large geographical separation of cells using same frequencies
 → large channel re—use factor
- M element antenna array can null out up to M-1 users per slot, but with reduced diversity gain.
- Such a system can employ a smaller channel re—use factor
- Alternatively can have up to M-1 users per slot in one cell \rightarrow Space division multiple access (SDMA).

Antenna Arrays with CDMA

- Exploit spatial redundancy to suppress noise and directional co—channel interference.
- In general, number of active users \gg array size M. Cannot normally null—out all interferers.
- Doubling array size should halve the interference and noise level.
- Can also exploit additional space diversity
 diminishing returns as order increases.

Receiver Algorithms

- Fixed beam (spatial DFT) receiver
- Direction of arrival (DOA) measurement
- Channel multipath estimation
- Interference suppression techniques

Receiver Algorithms [2]

Fixed Beam: set of fixed beam patterns cover sector.

- Simplest algorithm; "easy" to implement.
- Problems with cusping losses and wide angular spread.

DOA Receiver: measure angles of arrival of multipath channel and steers beams.

- Useful for finding subscriber location.
- Array calibration problems; some algorithms sensitive to coherent multipath.
- Unambiguous array manifold required; diversity gain limited.

Receiver Algorithms [3]

Channel Estimation: estimate amplitude & phase for each multipath component.

- Complexity is reasonable
- Good performance if interference is spatially white

Interference Suppression: apply prewhitening filter before channel estimation.

- High complexity receiver.
- Provides the best performance in most cases.
- Improvement over channel estimation alone may be limited.

Practical Issues

The gains from an antenna array system can be used to:

- Increase system capacity
- Reduce mobile transmit power
- Improve quality of service
- Increase cell range or coverage area

But, there are algorithm issues:

- Complexity and numerical stability
- Speed of convergence
- Operation on fast fading channels

Algorithm Comparison

- 1GHz system; 8 element array spacing 0.5λ ; 50 data symbols used for estimation.
- Results for 0 Hz Doppler:

Results for 200 Hz Doppler:

Mobile Range

Mobile Range = $\frac{R}{D}$

• Mobiles close to the base station have small range \approx 1 and thus have large angular width \approx 50°.

Uplink Capacity Simulation

1. Four tap Rayleigh fading power profile:

$$H(z) = 1 + 0.5z^{-1} + 0.25z^{-2} + 0.125z^{-3}$$

- 2. Three normalised mobile ranges 1, 4 and 16 (angular widths 53^o , 14^o and 3.5^o).
- 3. CDMA processing gain of W = 256; perfect average power control of each user.
- 4. There are M antenna elements covering a 120^o sector. Users are uniformly distributed in angle.
- Assume perfect channel estimation performance estimated at position with lowest beamformer gain.
- 6. Capacity assessed for a BER of 10^{-2} .

Capacity Results

Plot of BER vs Number of Users for different M and mobile ranges with W=256.

	Mobile Range		
M	1	4	16
1	30	30	30
2	73	59	58
4	169	114	105
8	366	230	189

Maximum number of users for different M and mobile ranges for BER of 10^{-2} .

The Uplink: Discussion

- 1. Antenna arrays can easily be added to existing CDMA systems, to provide significant capacity gains.
- 2. The fixed beam suboptimal solution has limited complexity & is easy to install.
- 3. Antenna array receivers must track "channel variations" well, particularly in low SNR and fast fading environments.
- Require sophisticated array processing receiver.
- 5. The system capacity is sensitive to mobile position and available diversity gain.

Downlink Considerations

- Most cellular standards use frequency division duplex (FDD) for the uplink & downlink.
- In an FDD system, the uplink/downlink separation is at least 40 MHz – Rayleigh fading uncorrelated between links.
- The downlink channel cannot be directly measured in current cellular systems.
- Two approaches to downlink diversity techniques and downlink beamforming.

Downlink Algorithms

- Diversity Techniques: Use multiple antennas to induce diversity at the mobile e.g. soft–handoff.
- Downlink Beamforming: There are a number of possible methods here:
 - 1. Use uplink channel estimates to transmit on the downlink.
 - 2. Transmit known beam patterns & use feedback from the mobile to calculate the channel.
 - 3. Employ time division duplex (TDD) techniques, so that the uplink and downlink channels are on the same frequency.

Conclusions

- 1. Considered the integration of antenna arrays within CDMA cellular systems.
- 2. Antenna arrays offer large capacity increases on the uplink and the base station added cost is minimal.
- 3. Precise choice of array processing algorithm is an ongoing research investigation.
- 4. Providing effective beamforming on the downlink is a more formidable problem.

Acknowledgements

- Colleagues in Signals and Systems group at the University of Edinburgh: http://www.ee.ed.ac.uk/~profiles/sas/ expecially Dr John S. Thompson.
- Access to results of work at:
 Universitate Kaiserslautern Walter Baier
 University of Bristol J.E. McGeehan
 Stanford University A.J. Paulraj
 Nortel Chris Ward.

Vision for 3rd Generation Systems

Three distinct data services:

- 144 kbit/s to vehicular mobile users with omni or sectored base stations
- 384 kbit/s to pedestrian and indoor users with base station array processing
- 2 Mbit/s for indoor desktop users may use both base station and mobile array processing receivers to achieve reasonable user capacity

