Radio Resource Management

1. Frequency reuse among cells

2. Multiple Access within cells: How to share radio resources among multiple users

Frequency Division Multple Access: FDMA

Every user has its own frequency channel

Time Division Multiple Access: TDMA

Users share the same bandwidth but transmit one after the other

Code Division Multiple Access: CDMA

User signals overlap in frequency and time.

Orthogonality of waveforms is used to separate user signals

Frequency

- Frequency Reuse is the core concept of cellular mobile radio
- Users in different geographical areas (in different cells) may simultaneously use the same frequency
- Frequency reuse drastically increases user capacity and spectrum efficiency
- Frequence reuse causes mutual interference (trade off link quality versus subscriber capacity)

Geometry of a Hexagon

Surface area is 6 R^2 times $(\sqrt{3})/4$

Theoretical Network Planning

Cluster: set of different frequencies used in group of cells

Cluster is repeated by linear shift *i* steps along one direction *j* steps in the other direction

How many different frequencies does a cluster contain?

Distance between cell centers = $\sqrt{3}$ × Cell Radius

Reuse distance

distance between the centers of two co-channel cells

$$R_u = \sqrt{i^2 + j^2 + 2ij\cos\frac{p}{3}} \sqrt{3}R$$

where

R is Cell Radius

*R*_u is Reuse Distance

and

 $\cos(\pi/3) = 1/2$

Cluster Radius

Radius of a cluster

$$R_c = \frac{R_u}{\sqrt{3}} = \sqrt{\frac{i^2 + j^2 + ij}{3}} R$$

Cluster Size

C: number of channels needed for (i,j) grid

C: is proportional to surface area of cluster

Surface area of one hexagonal cell is

$$S_R = \frac{3\sqrt{3}}{2} R^2$$

Surface area of a (hexagonal) cluster of C cells is

$$S_{R_u} = CS_R = \frac{3\sqrt{3}}{2} \left\{ \frac{R_u}{\sqrt{3}} \right\}$$

Combining these two expressions gives $R_u = R\sqrt{3C}$

Possible Cluster Sizes

We have seen
$$R_u = R\sqrt{3C}$$

and also

$$R_u = \sqrt{j^2 + j^2 + ij} \sqrt{3} R$$

Thus:

$$C = i^2 + j^2 + ij$$

with integer i and j.

Cellular Telephony

Choose C to ensure acceptable link quality at cell boundary

Typical Cluster Sizes

•

Cluster size $C = i^2 + ij + j^2 = 1, 3, 4, 7, 9, ...$

C = 1 i = 1, j = 0C = 3 i = 1, j = 1C = 4 i = 2, j = 0C = 7 i = 2, j = 1C = 9 i = 3, j = 0C = 12 i = 2, j = 2

Cluster size for CDMA net

}Usual cluster sizes for analogue
} cellular telephone nets

Design Objectives for Cluster Size

- High spectrum efficiency many users per cell small cluster size gives much bandwidth per cell
- High performance
 Little interference
 Large cluster sizes

Adaptation to growth of system

Decrease Cell Sizes

- · Macro-cellular 1 30 km
- Micro-cellular 200 2000 m
- Pico-cellular 4 200 meter

Cell Sectorization

The effect of decreasing cell size

- •Increased user capacity
- •Increased number of handovers per call
- •Increased complexity in locating the subscriber
- •Lower power consumption in mobile terminal:
 - · Longer talk time,
 - · Safer operation
- •Different propagation environment, shorter delay spreads
- •Different cell layout,
 - · lower path loss exponent, more interference
 - · cells follow street pattern
 - more difficult to predict and plan
 - more flexible, self-organizing system needed (cf. DECT vs. GSM)

Advantages of Digital Transmission

Digital speech transmission reacts differently to changing performance of the radio link

Higher capacity:

- 1) speech coding
- 2) smaller protection ratios, denser reuse
- (NB: same reuse of IS-54 and analog AMPS in US)

Security

- 1) Privacy
- 2) Protected against unauthorized use

Additional services