The Basics of Code Division Multiple Access

Jean-Paul M.G. Linnartz Philips Research and TU/e

Jean-Paul Linnartz, 2007 (CDMA)

Outline

Multiple access methods

- FDMA, TDMA, CDMA

Spread spectrum methods

- Frequency Hopping
- Direct Sequence
 - More on code sequences
 - IS-95 cellular CDMA
 - Rake receiver
- Multi-Carrier CDMA
- UltraWideBand pulse radio

Multiple Access

Code Division Multiple access

Advantages of spread-spectrum transmission

- Low spectral power density (undetectability)
- Random access
- Resistance to interference
- Resistance to multipath fading
 - Time-domain interpretation: separate all time-shifted paths
 - Freq-domain interpretation: signal is too wide to vanish in a fade

Spreading methods

Frequency Hopping

- Applied in GSM, Military, ISM bands, Blue tooth

Direct sequence

 Applied in IS-95 IS-136 Cellular CDMA, GPS, UMTS, W-CDMA, Military

Multi-Carrier CDMA

- In research

Ultra Wide Band

- Speculations only (in 1999)

Frequency Hopping

Slow hopping: The carrier frequency chances at every burst transmission (GSM can do slow-FH)Fast hopping: Carrier changes its frequency several times during a single bit transmission

Direct Sequence

User data stream is multiplied by a fast code sequence

Example:

- User bits 101 (+ +)
- Code 1110100 (+ + + + -); spead factor = 7

	User bit ₁ = 1							User $bit_0 = -1$							User bit ₊₁ = 1						
1	1	1	-1	1	-1	-1	-1	-1	-1	1	-1	1	1	1	1	1	-1	1	-1	-1	

Multi-Carrier

Direct Sequence + OFDM Direct sequence where spreading sequence is FFT of normal code sequence

Code sequence: (hor) + - + -Bit sequence: (vert) + - -

Jean-Paul Linnartz, 2007 (CDMA)

Ultra Wide Band

Transmission of very short pulses (fraction of a nanosecond), with bandwidth of many Gigahertz.

Receiver "correlates" to find pulses

Practical problems:

- Synchronisation
- The signal will experience dispersion, and many individual reflections are received. It is extremely difficult to gather the energy from many paths
- While TX is power-efficient, the RX typically consumes a lot of power.

Direct Sequence CDMA

Jean-Paul Linnartz, 2007 (CDMA)

User separation in Direct Sequence

Different users have different (orthogonal ?) codes.

Multipath Separation in DS

Different delayed signals are orthogonal

Power Spectral Density of Direct Sequence Spread Spectrum

Green: Wanted DS signalRed:Narrowband jammerGray:Noise

Effects of Multipath (I)

Effects of Multipath (II)

DS in positioning systems

GPS: Global Positioning System

Measure time of arrival of satellite signals Bandwidth = 1MHz: Time resolution = 1 μ s Distance resolution = $c * 1 \mu$ s = 300 meter

L.O.S to 4 satellites is needed to calculate time reference, latitude, longitude and altitude.

Spreading Sequence Characteristics

Desirable code properties include

- •Low auto-correlation sidelobes
- Low cross-correlation
- •Flat power spectrum

Popular Codes: m-sequences

Linear Feedback Shift Register Codes:

- Maximal length: $M = 2^{L} 1$. Why?
- Every bit combination occurs once (except 0^L)
- Autocorrelation is 2^{L} 1 or -1
- Maximum length occurs for specific polynomia only

correlation:

$$R(k) = \sum_{m=0}^{M-1} c(m)c(m-k)$$

$$R(k) = M$$

$$k$$

LFSR m-codes

Recursion

$$s_{j} = -c_{1} s_{j-1} - c_{2} s_{j-2} - \dots - c_{L} s_{j-L}$$

$$1s_{j} + c_{1} s_{j-1} + c_{2} s_{j-2} + \dots + c_{L} s_{j-L} = 1$$

Output z-Polynomial:

 $S(z) = s_0 + s_1 z + s_2 z^2 + ...$ Connection Polynomial: $C(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3$ $\bigotimes = \mathsf{EXOR}$ $c_{i,} s_{i} \text{ in } \{0,1\}$ addition mod 2

C(z) S(z) = P(z) = intial state polynimial

 Maximum length occurs for irreducable polynomia only

Popular Codes: Walsh-Hadamard

Basic Code (1,1) and (1,-1)

- Recursive method to get a code twice as long
- Length of code is 2^{\prime}
- Perfectly orthogonal
- Poor auto correlation properties
- Poor spectral spreading.
 - all "1" code (col. 0) is a DC sequence
 - alternating code (col. 1) is a spectral line
- Compare the WH with an FFT
 - butterfly structure
 - occurrence of "frequencies"

One column is the code for one user

 $R_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$

 $R_{2i} = \begin{bmatrix} R_i & R_i \\ R_i & -R_i \end{bmatrix}$

Jean-Paul Linnartz, 2007 (CDMA)

Popular Codes: Gold Sequences

Created by Exor-ing two *m*-sequences Gold sequence of length $m = 2^{l-1}$:

- use two LFSRs, each of length 2^{/-1}.

Better cross-correlation properties than maximum length LSFR sequences.

Prefered *m*-sequences: crosscorrelation only takes on three possible values: -1, -*t* or *t*-2.

Random Codes

Random codes cannot exploit orthogonality Useful in distributed networks without coordination and without synchronisation

Maximum normalized cross correlation R_{max} (at zero time offset) between user codes

with N the spread factor and Nu the number of users

- Walsh-Hadamard codes N = Nu, so $R_{max} = 0$
- Gold codes N = Nu 1, so $R_{max} = 1/N$.

Cellular CDMA

IS-95:proposed by QualcommW-CDMA:future UMTS standard

Advantages of CDMA

- Soft handoff
- Soft capacity
- Multipath tolerance: lower fade margins needed
- No need for frequency planning

Cellular CDMA

Problems

- Self Interference
 - Dispersion causes shifted versions of the codes signal to interfere
- Near-far effect and power control
 - CDMA performance is optimized if all signals are received with the same power
 - Frequent update needed
 - Performance is sensitive to imperfections of only a dB
 - Convergence problems may occur

Synchronous DS: Downlink

- In the 'forward' or downlink (base-to-mobile): all signals originate at the base station and travel over the same path.
- One can easily exploit orthogonality of user signals. It is fairly simple to reduce mutual interference from users within the same cell, by assigning orthogonal Walsh-Hadamard codes.

IS-95 Forward link ('Down')

- Logical channels for pilot, paging, sync and traffic.
- Chip rate 1.2288 Mchip/s = 128 times 9600 bit/sec
- Codes:
 - Length 64 Walsh-Hadamard (for orthogonality users)
 - maximum length code sequence (for effective spreading and multipath resistance
- Transmit bandwidth 1.25 MHz
- Convolutional coding with rate 1/2

IS-95 BS Transmitter

Rationale for use of codes

Long code: scrambling to avoid that two users in neighboring cells use the same code short code: user separation inone cell PN exor WH:

- maintains excellent crosscorrelation
- improves autocorrelation (multipath)

Power Control in CDMA Systems

Jean-Paul Linnartz, 2007 (CDMA)

Power Control

Aim of power control - optimise received power by varying transmitted power

Two methods - open loop and closed loop

Open loop - estimate path loss from channel measurements

Closed loop - use feedback from other end of link

What step size

In UMTS steps power steps are about 1 db

What update rate

In UMTS update rate is about 1500Hz

Power Control in IS-95

CDMA performance is optimized if all signals are received with the same power Update needed every 1 msec. (cf. rate of fading) Performance is sensitive to imperfections of only a dB

Example of Power Control Action from UMTS

Asynchronous DS: uplink

In the 'reverse' or uplink (mobile-to-base), it is technically difficult to ensure that all signals arrive with perfect time alignment at the base station. Different channels for different signals power control needed

IS-95 Reverse link ('Up')

- Every user uses the same set of short sequences for modulation as in the forward link.
 Length = 2¹⁵ (modified 15 bit LFSR).
- Each access channel and each traffic channel gets a different long PN sequence.
 Used to separate the signals from different users.
- Walsh codes are used solely to provide *m*-ary orthogonal modulation waveform.
- Rate 1/3 convolutional coding.

IS-95 Uplink

Rate 1/3 convolutional encoder: every user bit gives three channel bits

Power Control in IS-95

CDMA performance is optimized if all signals are received with the same power Update needed every 1 msec. (cf. rate of fading) Performance is sensitive to imperfections of only a dB

Wideband-CDMA (IS-665)

Bandwidth (1.25), 5, 10 or 15 MHz

Chip rate (1.024), 4.096, 8.192 and 12.288 Mc/s

Spread factors 4 - 256

Spreading sequences:

- Down: variable length orhogonal sequences for channel separation, Gold sequences 2¹⁸ for cell separation
- Up: Gols sequences 2⁴¹ for user separation

Sequence length 2³² - 1

User data rate 16, 31 and 64 kbit/s

Power control: open and fast closed loop (2 kHz)

PS. SUBJECT TO CHANGES, TO BE CHECKED !!

Rake receiver

A rake receiver for Direct Sequence SS optimally combines energy from signals over various delayed propagation paths.

Effects of dispersion in DS

Channel Model

$$h(t) = \sum_{l=0}^{L-1} h_l \delta(t - lT_c)$$

 h_l is the (complex Gaussian?) amplitude of the *l*-th path. The Rake receiver correlates with each delayed path

DS reception: Matched Filter Concept

The optimum receiver for any signal

- in Additive white Gaussian Noise
- over a Linear Time-Invariant Channel

is 'a matched filter':

Matched Filter with Dispersive Channel

Rake Receiver: Practical Implementation

Rake Receiver

BER of Rake Receivers

In the *i*-th finger, many signal components appear:

BER of Rake

Ignoring ISI, the local-mean BER is

$$BER = \frac{1}{2} \sum_{j=0}^{L_R} \pi_j \left[1 - \sqrt{\frac{\gamma_j}{\gamma_j + 1}} \right]$$

where
$$\pi_j = \prod_{\substack{i=1 \ i \neq j}}^{L_R} \frac{\gamma_j}{\gamma_j - \gamma_i}$$

with γ_i the local-mean
SNR in branch *i*.

J. Proakis, "Digital Communications", McGraw-Hill, Chapter 7.

Advanced user separation in DS

More advanced signal separation and multi-user detection receivers exist.

- Matched filters
- Successive subtraction
- Decorrelating receiver
- Minimum Mean-Square Error (MMSE)

Concluding Remarks

DS-CDMA is a mature technology for cellular telephone systems. It has advantages, particularly in the downlink.

The rake receiver 'resolves' multipath delays

DS-CDMA has been proposed also for bursty multimedia traffic, but its advantages are less evident