
Multipath Propagation II  

Properties of the signal envelope

Before we can derive properties of the Rayleigh-fading envelope , we need 

to express correlation functions of the inphase and quadrature components .  Rice 

derived the autocorrelation  defined as

  

with  the power spectral density of the RF-signal.  In the special case of uniform angles of 

arrival, the cross correlation , with

 ,

is identical to zero for .  The behavior of the correlations at  can be obtained 

from the moments of the power spectrum

 .

For , one finds  for n is odd and
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where  is even.  In particular  with  the 

local-mean power for an isotropic antenna.  Hence,

The autocorrelation  is  with  the Bessel function of zero order[ ].

Davenport and Root [ ] expressed the autocorrelation of the envelope in terms of a hypergeomet-

ric function, namely

For , a first order expansion of F in terms of  gives .

Exercise Verify that this approximation gives   which is very close to theo-

retical  . 

Removing the mean amplitude , the autovariance is found as 

 where, for the field components 
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with  the local-mean output power of a (magnetic) loop antenna .

The power spectral density   of the envelope is found from the Fourier transform

Expressing the autocorrelation  of the inphase and quadrature components in terms 

of the power spectral density  of the received signal, we find [Jakes] for positive frequencies 

 

It follows that the spectrum of the envelope contains frequencies up to twice the maximum Dop-

pler shift. A mathematical explanation of this is the convolution in frequency domain resulting 

from the squaring-operation in expression ( ) for the autocorrelation of the envelope.

Exercise Draw a phasor diagram of two interfering waves. Show how the phase and ampli-

tude of the phasor sum can change rapidly even for modest changes of the individ-
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ual components.

For the electric field component , the spectrum of the envelope is

  

with K the elliptic integral of the first kind with  [ ].

Exercise If a dominant wave arrives from angle , the received signal power spectrum is

.  Find the spectrum of the resulting enve-

lope.  Explain why the new spectrum is still band limited to , but contains dis-

continuities or peaks at .

Derivatives of amplitude and phase

In a Rician-fading channel with zero line-of-sight amplitude , the inphase and quadra-

ture component and their derivatives are zero-mean jointly Gaussian.  The covariance matrix of 

 is 

,

where  is the  moment of the Doppler spectrum of the scattered power.  The determinant of 

this matrix is .

Exercise Find the inverse of  and give the joint pdf of .
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Rice [ ] expressed the pdf of  by transformation of random variables.  For a Rician-

fading signal with nonzero line-of-sight component, thus with , one can write

.

Hence, .  After some algebraic operation, this leads to 

.

This general result is relevant to a number of more specific properties to be derived later.

Exercise Find  for Rayleigh-fading .  Give an intuitive explanation why 

is normal.  Find the variance of .

Threshold crossing rate

The level crossing rate  is defined as the expected number of times that the envelope  

crosses in positive direction a particular level  during one second.  Given a particular derivative 

 of the envelope, the duration  of a transition through the range  

is .  The conditional expectation of the number of crossings per second is 
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Averaging this over , we find the result  which was first used by Rice 

[ ].  For our case , the joint pdf of the amplitude and phase and corresponding derivatives 

is

 .  

Unconditioning on  shows that, for Rayleigh-fading,  is 

zero-mean Gaussian with variance  independent of .  The fade margin  is 

defined as the ratio of the local mean power  and the power  corresponding to the threshold 

, thus  and

 .

More in general, for Rician fading, the level crossing rate becomes [Rice, ‘45]
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where  is the nth moment of the Doppler spectrum of the scattered power only.

Exercise Assume Rician fading with , so .  Show that

.

In interference-limited nets, the Rayleigh-fading wanted signal often experiences interference 

from multiple, say , i.i.d. Rayleigh-fading other signals.  The rate of crossing a C/I-threshold  is 

addressed.  The local fade-margin  is  where  is the joint local-mean interference 

power .  Assuming incoherent (power) cummulatiion of interference, the 

joint interfering signal has a Nakagami envelope , with .  Given the instantaneous 

amplitude , the derivative  is Gaussian with

 

If all interfering signals have the same Doppler spectrum, the variance of .  

We now express the pdf of the signal-to-interference amplitude ratio  and its deriva-

tive  in terms of the mutually independent pdfs of .

      Since , we find .   So, 
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After some algebraic manipulations, one finds the threshold crossing rate 

 

where  is the gamma function.  The factor

  

varies between  for  and  for .

Exercise Show that for , the level crossing rate ( ) is recovered.

Outage probability

An RF signal outage is the event that the signal-to-joint-interference ratio drops below minimum 

required threshold during a short-term observation window T.  The duration T is chosen such that 

multiple interfering signals add incoherently, i.e., T is much larger that the coherence time of the 

modulation.  Also T is small compared to the effects of fading .  The probability that 

the C/I-ratio is above the threshold z is

 

For a Rayleigh-fading wanted signal, the (cumulative) distribution is the exponential function 

.  So, the expression can be interpreted as the Laplace Transform of the pdf of joint 

interference power.  For n i.i.d. incoherently cumulating Rayleigh-fading signals each with local-

mean power , we find 
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Exercise Study the special cases  and .  Explain why the distribution of  is

recovered for .  For decreasing fade margins , the probability of

successful reception vanishes slowly if  but rapidly if .  Why?

Average (non-) fade duration

The probability of a signal outage (C/I < z) should be equal to the threshold crossing rate multi-

plied by the average duration of a fade.  Hence, for a wanted Rayleigh-fading signal in the pres-

ence of Nakagami interference, the average nonfade duration  is 

and the average fade duration is 

Exercise Show that for the event of a noise-limited channel with minimum required signal

power ,  and  with .
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