QAM Demodulation

- Application area
- What is QAM?
- What are QAM Demodulation Functions?
- General block diagram of QAM demodulator
- Explanation of the main function
 - (Nyquist shaping, Clock & Carrier Recovery, AGC, Adaptive Equaliser)
- Performance
- Conclusion
Example Application Area

“Wireless Cable” Digital TV using Microwave Transmission

- Compression = bit rate reduction
- Multiplexing = assembly of multiple programs
- Modulation = conversion to transmission format

- Set-top Box = Integrated Receiver Decoder (IRD), provides a subscriber access to a wide range of programs
What is QAM?

- Amplitude Modulation of
- Two Orthogonal Carriers

\[x_i(t) = \sqrt{2E_o/T_s} a_i \cos(\omega_c t) + \sqrt{2E_o/T_s} b_i \sin(\omega_c t) \]

64QAM in time domain

64QAM Constellation diagram
M-ary QAM

- Satellite: $S/N > 3$ dB for $M=4$
- Cable: $S/N > 21$ dB for $M=64$
- $S/N > 27$ dB for $M=256$

Wireless Communications
What to do to recover the information?

<table>
<thead>
<tr>
<th>Functions</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automatic Gain Control</td>
<td>Optimal position of constellation diagram in reception window</td>
</tr>
<tr>
<td>Quadrature down conversion</td>
<td>I & Q base band signals</td>
</tr>
<tr>
<td>(Half) Nyquist Filtering</td>
<td>Pulse shaping</td>
</tr>
<tr>
<td>Clock Recovery</td>
<td>Sampling reference for A/D Converter</td>
</tr>
<tr>
<td>Carrier Recovery</td>
<td>Carrier frequency reference</td>
</tr>
<tr>
<td>Adaptive Equaliser</td>
<td>Compensate for channel distortion</td>
</tr>
<tr>
<td>Demapping</td>
<td>Representation of received data in bits</td>
</tr>
</tbody>
</table>
System Block Diagram

Wireless Communications
Automatic Gain Control

- 2 loops AGC
- Coarse AGC to prevent ADC from overloading
- After Nyquist filtering and Equalisation ‘small’ QAM remains.
- Fine AGC to position constellation diagram to decision window

Wireless Communications
(Half) Nyquist Filtering

* Pulse Shaping required to realise ISI=0 in limited BW

* ISI=0 when zero crossings occur at multiples of $T_s=1/f_s$

* Achieved with Nyquist Criterion
 (DVB: $\alpha = 15\%$)

* Cascade of Transmitter & Receiver fulfil Nyquist Criterion
 (Half Nyquist each)

* Digital implementation
 ($T_{delay} = 9 T_{symbol}$)

* This delay is in the loops and thus influences the demodulator architecture

Wireless Communications
Clock Recovery

- Recovery with 2nd order PLL

- Clock Detector
 - Energy Maximization algorithm
 - After Half Nyquist Filter to achieve ISI=0 at detector input

- Half Nyquist Filter in loop is allowed
 - Received clock has crystal accuracy (100 ppm at 7 Msym/s))
 - Loop BW may be small
 - Delay in loop is allowed (no instability)

- Quadarture Demodulation
 - $f_{\text{clock}} = 4 f_{\text{symbol}}$
 - Simple with j^n ($n=0,1,2,3,...$)

Wireless Communications
Carrier Recovery

- Recovery with 2nd order PLL
- **Carrier Detector**
 - Decision directed
 - After equaliser
 - PD (lock) and PFD (unlock)
 * PFD for large acquisition range (100 kHz)
 * PD for stable behaviour once in lock
- **Half Nyquist & Equaliser in loop**
 - Large delay causes problems for disturbances like:
 * phase noise
 * microphonics (mechanical vibrations)
- **Alternative solution required**

Wireless Communications
Carrier Phase Disturbances (I)

- **Additive White Gaussian Noise**
 - Random distribution
 - Mainly inserted in the cable channel

- **Result**
 - Enlarged constellation points

- ** PLL Properties**
 - Average the noise
 - Loop BW small
 - Low IL

Implementation Loss

Diagram:
- **Cable** → **Tuner** → **QAM demod** → **s(t)** → **+** → **r(t)** → **n(t)** → **BW**
Carrier Phase Disturbances (2)

* Phase Noise & Microphonics
 - No random distribution
 - Mainly inserted in the tuner by LC oscillators which are sensitive for mechanical vibrations (Microphonics)

* Result
 - Rotation of constellation diagram.

* PLL Properties
 - Follow the phase disturbance
 - Loop BW large
 - Low IL

* PLL properties for AWGN and phase noise are in contradiction

Wireless Communications
Phase noise versus AWGN

* Loop BW trade of between:
 a. Ability to follow phase noise
 b. Ability to average AWGN

* Rule of thumb:
 \[BW = \frac{1}{1000f_{symbol}} \]

* Simulations show this is approximately correct

* Optimum depends on S/N and amount of phase noise

* Problem: Optimum loop BW instable due to large delay in the loop (Half Nyquist + Equaliser).
Double Loop Carrier Recovery

* Introduction of second loop with (relatively) small delay

* Outer loop
 - Adjust (static) frequency offset
 - Small loop BW due to large delay
 - PD/PFD

* Inner Loop
 - Optimum loop BW as trade off between phase noise & AWGN
 - Large Loop BW due to small delay
 - PD only

* Conclusion: optimum loop BW can be selected and causes no instability
Equalisation

* Nyquist Criterion specifies a frequency domain condition on the received pulses to achieve ISI=0

* Generally this is NOT satisfied unless the channel is equalised

* Equalise the channel = compensate for channel distortion

* Unfortunately, any equalisation enhances noise from the channel

* Tradeoff between:

 * Accurately minimising ISI
 * Minimising the noise

* Different types of Equaliser
Multipath Distortion

* Multipath distortion causes ISI
* Each original point consists of \(M \) new points in the shape of constellation diagram
* Amplitude, delay and phase of the echo determine shape/size of the small constellation diagrams
* Varying channel requires *Adaptive Equaliser*
Equaliser Structure

Linear Equaliser (LE)

Symbol Decision → Coefficients → Complex FIR filter → I_{out} Q_{out} → I_{in} Q_{in}

Decision Feedback Equaliser (DFE)

Symbol Decision → I_{out} Q_{out} → I_{in} Q_{in}

FFE + DFE

Wireless Communications
Equaliser Structure

Linear Equaliser (LE)

\[H(z) = 1 + A z^{-\tau} \]
\[G(z) = 1 - A z^{-\tau} \]
\[H(z) G(z) = 1 - A^2 z^{-2\tau} \]

(-) Residual ISI (\(A^2,2\tau\))

(+) ‘Fast’ acquisition

(-) ‘High’ noise amplification

Decision Feedback Equaliser (DFE)

\[G(z) = \frac{1}{1 + A z^{-\tau}} \]
\[H(z) G(z) = 1 \]

(+) No residual ISI

(-) ‘Slow’ acquisition

(+) ‘Low’ noise amplification

Wireless Communications
Equaliser Adaptation Algorithm

<table>
<thead>
<tr>
<th>Zero Forcing (ZF)</th>
<th>Mean Square Error (MSE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(+) Complete elimination of ISI</td>
<td>(+) Minimize sum of ISI and noise</td>
</tr>
<tr>
<td>(-) Penalty = Noise amplification</td>
<td>(+) Less noise amplification by</td>
</tr>
<tr>
<td></td>
<td>(-) Allowing residual ISI</td>
</tr>
</tbody>
</table>
Adaptive Equaliser

<table>
<thead>
<tr>
<th></th>
<th>ZF (Zero Forcing)</th>
<th>MSE (Mean Square Error)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LE</td>
<td>Suited for QAM with M ≤ 64</td>
<td>Suited for QAM with M ≤ 64</td>
</tr>
<tr>
<td></td>
<td>(-) residual ISI does not allow higher M</td>
<td>(-) residual ISI does not allow higher M</td>
</tr>
<tr>
<td></td>
<td>(+) Fast acquisition</td>
<td>(+) Fast acquisition</td>
</tr>
<tr>
<td></td>
<td>(+) High stability</td>
<td>(+) High stability</td>
</tr>
<tr>
<td>DFE</td>
<td>No suitable solution</td>
<td>Required for QAM with M > 64</td>
</tr>
<tr>
<td></td>
<td>(-) Because of complete elimination of ISI system is instable when zero in spectrum</td>
<td>(+) Stability guaranteed when zero in spectrum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equaliser</td>
<td>Equaliser</td>
</tr>
<tr>
<td></td>
<td>channel</td>
<td>channel</td>
</tr>
</tbody>
</table>

(-) ‘Slow’ acquisition

Wireless Communications
Measurement Results

- Theory
- AWGN (single car loop)
- AWGN (double car loop)
- 1 ray echo
- 2 ray echo
- 3 ray echo

Implementation Loss:
- 0.6 dB
- 1.1 dB
- 1.6 dB
- 1.9 dB
- 2.0 dB

BER vs. S/N graph with different scenarios labeled.
Conclusion

Single Chip QAM Demodulator with low Implementation Loss
- Double Loop AGC for optimum usage of A/D Converter
- Delay in half Nyquist filter and equaliser require double carrier recovery loop structure to achieve high performance on phase noise & microphonics
- Adaptive equaliser
 * LE/ZF or LE/MSE preferred for QAM with $M \leq 64$
 * DFE/MSE required for QAM with $M > 64$