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Who’s Tim Schenk

•
 

Research Scientist @ Philips Research, Eindhoven,
 Connectivity Systems and Networks

 
–

 
department

•
 

1996 –
 

2002: Ir./M.Sc. studies @TU/e
•

 
2002 –

 
2006: Ph.D. project @TU/e and Agere

 
Systems

Part of EZ-funded project BroadBand Radio@Hand: TU/e, KPN,
TNO ICT, Philips Research and Agere Systems. 

•
 

Research interests:
–

 
Wireless communications

–
 

Crosslayer design
–

 
Analogue/digital signal processing

–
 

Low-power techniques
–

 
Sensor networks
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Outline of this part of the course

•
 

System introduction
� Digital wireless communication system
� Orthogonal frequency division multiplexing (OFDM)
� Multiple antenna (MIMO) systems 
� System implementation

•
 

RF imperfections
� Influence of RF impairments
� Digital compensation approaches

•
 

Carrier frequency offset
•

 
Phase Noise

•
 

IQ imbalance
•

 
Nonlinearities
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11.00 –
 

12.00

12.00 –
 

13.00
Lunch

13.00 –
 

14.00

14.00 –
 

14.30

14.30 –
 

15.30

Instruction

15.30 –
 

16.00
Instruction



4Tim Schenk (tim.schenk@philips.com), June 8, 2007

Part I: Channel, OFDM, MIMO and system

•
 

Digital wireless communication system
•

 
Orthogonal frequency division multiplexing (OFDM)

•
 

Review of the basics
•

 
System standards

•
 

Example TX/RX processing: IEEE 802.11a
•

 
Multiple antenna (MIMO) systems 

•
 

Review of the basics
•

 
Physical interpretation

•
 

System implementation



5Tim Schenk (tim.schenk@philips.com), June 8, 2007

Digital communication systems (I)

•
 

Ever higher demand for speed in wireless 
communication systems

•
 

Solution: increase in bandwidth 
Æ Æ sample length decreases

•
 

Increase in spatial resolutionÆ More of the wireless 
channel is observable

TT == 11//ffss
ffss
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Digital communication systems (II)
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Digital communication systems (III)

•
 

Datarate
 

is proportional to bandwidth
•

 
Linear decrease using complex modulation

•
 

Multipath channel results in inter-symbol interference
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Multicarrier transmission

•
 

Divide the bandwidth in NN
 

equal
 proportions, guard bands

•
 

Symbol rate NN
 

times decreased
•

 
Less ISI, sharp filtering required
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OFDM (I)

••
 

NN
 

bands closer together 
due to orthogonality
Æ symbol rate/NN

•
 

Addition of cyclic prefix
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OFDM (II)

•
 

Use of CP enables the removal of ISI at the receiver
•

 
Increase of overhead due to CP
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OFDM (III)

•
 

Frequency selectivity grows with time delay spread 
(TDS), but flat channel per subcarrier.

•
 

To get reliable wireless transmission channel coding
 

is 
necessary. Coding/spreading over frequency increases 
diversity order.
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OFDM (IV)

•
 

To maximize the total throughput we can vary 
modulation depth on different carriers Æ Adaptive 
modulation

•
 

High SNR Æ high number of bits, 
Low SNR Æ low number of bits.
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OFDM as multiple access technique Æ OFDMA

•
 

Divide carriers between the different users
•

 
Data rate differentiation between users

•
 

Allocation can be based on channel knowledge
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Wireless LAN

•
 

Application: Office, home, Hotspots
•

 
Standardized in IEEE 802.11a/g ÆWiFi
(ETSI HiperLAN)

•
 

Range: 10 –
 

100m
•

 
2.4 GHz and 5 GHz band

•
 

Datarate: 6 –
 

54 Mbps
•

 
Bandwidth = 20 MHz

•
 

64 subcarriers
•

 
CP length = 16 samples Æ 800 ns
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Wireless Local Loop / MAN

•
 

Application: Last Mile (P2P), Mobile
•

 
Standardized in IEEE 802.16 ÆWiMax
(ETSI HiperMAN)

•
 

Range: up to 50 km
•

 
Flexible bandwidth: 1.5 -

 
20 MHz

•
 

16revD: 2-11 GHz, NLOS, up to 75 Mb/s
OFDM, 256 subcarriers
OFDMA, 2048 subcarriers

•
 

16revE: < 6 GHz, NLOS, 
5 MHz Æ 15 Mbit/s , Mobility
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Digital Video Broadcasting

•
 

Application: Replacement Traditional broadcasting, TV 
in car, TV everywhere

•
 

DVB-T Æ Terrestrial broadcasting (European standard)
•

 
Bandwidth:  8 MHz Æ 5 TV channels

•
 

Variability: CP-length, modulation, coding rate
•

 
Data rate: 3.7 -

 
31.7 Mbps

•
 

2k and 8k subcarriers
•

 
50 -

 
860 MHz
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Ultra Wide Band

•
 

Application: Wireless PAN, cable-
 replacement

ÆWireless USB, Wireless FireWire, etc.
•

 
One of last two proposals for IEEE 
802.15.3a

•
 

Range: up to 10m
•

 
Initial: 3.1 GHz –

 
4.9 GHz

•
 

Datarate: 53.3 –
 

480 Mbps
•

 
Bandwidth = 528 MHz, 128 subcarriers

•
 

QPSK modulation, variable coding rate
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OFDM Transmitter (baseband)
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Preamble and pilot structure 802.11a (I)

Preamble
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Preamble and pilot structure 802.11a (II)

 0
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 800 ns    4 μs    Time
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OFDM Receiver (baseband)

FFT
Remove 
Cyclic 
Prefix

Binary
output

data

Channel 
estimation

Sync. Front-

 
end

example 802.11a

Demo-

 
dulation Decoding

Equali-
zation Sync.
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using pilots1-tap equil.
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Implementation – IEEE802.11a/g 
Atheros

Baseband
 

+ MACRF front-endsAntenna
connections
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Multiple-Input Multiple-Output

“The use of multiple antennas at both transmitter and 
receiver of a wireless communications system.”

•
 

Provides additional link throughput and/or range, 
without increase in bandwidth and transmit power.

•
 

Three main flavours:
–

 
Beamforming/Precoding

–
 

Diversity coding
–

 
Space division multiplexing
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Access
Point

MIMO Channel

Mobile 
Terminal
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MIMO Flavours: 1) Beam forming/precoding

•
 

Increase the reliability/received power of wireless link
•

 
Transmission using the eigenmodes

 
of the channel 

•
 

Requires channel state information at the TX
•

 
Different transformations for the different antennas / 
subcarriers

TX
R

X
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MIMO Flavours: 2) Diversity coding

diversity scheme: “a method for improving the reliability of a message 
signal by utilizing two or more communication channels with different 
characteristics, in order to combat fading and interference”

•
 

No channel state information available at the TX
•

 
Coding over space-time-frequency (block/trellis)

•
 

Orthogonal/non-orthogonal codes
•

 
Most well-known: Alamouti, Tarokh

TX

R
X
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MIMO Flavours: 3) SDM

Channel

RX1

RX2

RX3
Channel

TX1

TX2

TX3

MIMO
Processor

… …
Input

… …
Output

•
 

High speed data stream demultiplexed
 

into lower rate 
parallel streams

•
 

Complexity in TX: to estimate the TX data
•

 
No knowledge of wireless channel at TX required

x = [x1x2 . . . xNt ]
T

s = [s1s2 . . . sNt ]
T

x = Hs

H =

⎡⎢⎣ H11 · · · H1Nr

...
. . .

...
HNt1 · · · HNtNr

⎤⎥⎦
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MIMO Flavours: 3) SDM (cont’d)

•
 

Different kind of RX processing:
–

 
Linear:

•
 

Zero-Forcing:

•
 

MMSE:

–
 

Iterative: 
•

 
BLAST: 1) Detect         with the highest SNR

2) Substract
 

contributes of         of
3) return to 1) until all streams are detected 

-
 

Full search:
-

 
MLD:

x = Hs

s̃ = H†x = (HHH)−1HHx

s̃ = ( 1
SNRI+H

HH)−1HHx

sn
sn x

s̃ = argmins ||x −Hs||
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MIMO Flavours: Combinations

•
 

MIMO transmission schemes is an very active research 
field: #1 topic on IEEE communications conferences 
for last few years.

•
 

Tradeoffs between diversity and data rate is main topic 
→ combination between 2) and 3)

–
 

2 TX-based schemes (spatial spreading) with 3 TX branches
•

 
Schemes exploiting partial feedback of CSI 
→ combination between 1) and 3)

–
 

Precoding
 

/ pre-equilization
 

at the transmitter
–

 
MU MIMO

•
 

Holy Grail: Differential MIMO
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Physical Interpretation (I)

•
 

Assuming narrowband communication and using the matrix 
notation, the system equation can be written as (omitting 
noise) 

•
 

If H is square and invertible, the most simple solution (in 
math) is called zero-forcing and given by

•
 

The rows of are the so called weight vectors, denoted 
by     . For a 2 x 2 system this results in

Slides: Allert van Zelst, Qualcomm

x = Hs

s̃ = H†x = H†Hs = s
H†

w
s̃1 = w

1x

s̃2 = w
2x
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Physical Interpretation (II)

•
 

Applying the correct weights in line-of-sight with free space 
path loss, we get:

Applying Weight Vector Applying Weight Vector

Slides: Allert van Zelst, Qualcomm

w1 w2
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Physical Interpretation (III)

•
 

In an environment with reflection planes at x = -6λ
 

and 
x = 8λ, taking up to two bounces into account, we get:

Slides: Allert van Zelst, Qualcomm

Applying Weight Vector Applying Weight Vectorw1 w2
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MIMO Applied to OFDM

•
 

MIMO is a narrow band technique

•
 

Combining MIMO and OFDM results in a MIMO 
transmission and detection per subcarrier

Fr
eq
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Time
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MIMO OFDM Transmitter
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MIMO OFDM Receiver

FFT
Remove 
Cyclic 
Prefix

FFT

Detection & Decoding 
Block 

Contains: MIMO detection 
(for N subcarriers), phase 

drift correction, demapping, 
deinterleaving

 

and decoding.
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Tim
e and frequency

Synchronization

Remove 
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Performance of MIMO OFDM (I)

•
 

Results for 3x3 system, 
different detection methods. 
Corresponding curves for 
SISO systems  with equal 
branch rate (1x1, 1/3) and 
equal data rate (1x1).

•
 

Perfect sync. and channel 
knowledge at RX

•
 

VBLAST is less complex 
than MLD but performance 
is comparable
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Performance of MIMO OFDM (II)

•
 

2x3 linear detector schemes, 
ZF/MMSE, outperform 2x2 
computational complex 
detectors 

•
 

When extra receiver antenna 
is affordable, linear detection 
can be applied to achieve 
good performance.
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MIMO OFDM in Wireless LANs

•
 

In the IEEE 802.11a/g wireless LAN standards, we 
have 48 subchannels

 
available for data communication

–
 

Each subchannel
 

has a maximum air-throughput of 1.5 Mbits/s
•

 
For MIMO OFDM with three transmit antennas, this 
would lead to a maximum throughput of 3*48*1,5 
Mbits/s

 
= 216 Mbits/s

•
 

To have a more robustness link, coding is used in 
IEEE 802.11a/g. The maximum coding rate is ¾

•
 

This leads to a net throughput of ¾*216 = 162 Mbits/s
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TRIO (Triple Input Output)

•
 

In 2002 we have demonstrated 162 
Mbits/s

 
with Agere’s

 
TRIO test 

system
•

 
It transmits on a standard IEEE 
802.11a channel in the 5 GHz ISM 
band with about 50 mW

 
per transmit 

antenna
•

 
It is based on in-house developed 
RF, IF and baseband

 
boards

•
 

For RF, a 5 GHz GaAs
 

chip is used
•

 
Non-real time: off-line MIMO OFDM 
processing
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The Transmit Signals
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108 Mbits/s Transmission
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162 Mbits/s Transmission
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Implementation – MIMO 802.11a/g 

Airgo Networks (now Qualcomm)

Baseband
 

+ MAC
RF front-ends Antennas
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Wireless standards + MIMO/OFDM 
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Summary – Part I

•
 

Combination of MIMO and OFDM for high speed 
wireless systems
☺

 
Works well in multipath

 
environments

☺
 

High spectral efficiency
☺

 
Allows block processing and simple equalization (FFT)

/ Requires multiple RF front-ends
/ Performance is jeopardized by analogue radio 

front-end impairments (Part II&III)
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MIMO/OFDM – Additional reading

•
 

D.
 

Gesbert, et al., “From theory to practice: an overview of MIMO 
space-time coded wireless systems”, IEEE JSAC, April 2003.

•
 

S. Alamouti, “A simple transmit diversity technique for wireless 
communications,”

 
IEEE JSAC, 1998. 

•
 

G. Foschini, “Layered space-time architecture for wireless 
communication in a fading environment when using multi-

 element antennas,”
 

Bell Labs Technical Journal, 1996. 
•

 
Stüber, et al., “Broadband MIMO-OFDM Wireless 
Communications,”, Proc. IEEE, Feb. 2004.

•
 

Van Zelst and Schenk, “Implementation of a MIMO OFDM-based 
wireless LAN system,”

 
IEEE Trans. Sign. Proc., Feb. 2004.

•
 

R. van Nee and R. Prasad,
 

“OFDM for Wireless Multimedia 
Communications”, Book, Artech House.
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Part II: Digital comp. of RF impairments (I)

•
 

Why digital compensation?
•

 
Carrier frequency offset

–
 

What is the influence?
–

 
How to treat it?

•
 

Phase Noise
–

 
What is the influence?

–
 

How to treat it?
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transmitter

channel

digital
base-
band

RF

RF

RF
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digital
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RF

RF

RF

digital signalsdata in data out
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MIMO OFDM system

∼ Nt × 1 xk ∼ Nr × 1Hk∼ Nr ×Nt
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Typical transceiver structure - impairments

Digital
basebandVCO

LNA ADC I

ADC Q

LPF I

LPF Q

DAC I

Digital
baseband

DAC Q

VCO BPF

PA

carrier frequency offset

phase noise

IQ imbalance

nonlinearities

fc,2

fc,1
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Moore’s Law
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Moore’s Law helps digital
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Towards co-design of baseband & RF

•
 

Co-design of RF front-end and 
baseband part will result in most 
efficient solution

•
 

Mean idea: perform task in part where it 
is most optimal for system 
performance, cost and power 
consumption.

•
 

Problem: systems become increasingly 
complex: good understanding of 
front-end and baseband nessecarry.

•
 

First step: Digital estimation and 
compensation of front-end impairments
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•
 

Optimise and improve RF to meet specs

•
 

Accept that RF has limitations
–

 
Baseband

 
compensates RF imperfections

•
 

Exploit the adaptively of RF 
–

 
Control, Calibration and Compensation (C3): 
adaptively sets the parameters of RF 

–
 

Adaptive RF controlled by BB to optimize RF 
settings BBA/D

BBA/D

BBA/D

Technical innovations: roadmap of paradigms

Slide: Jean-Paul Linnartz, Philips Research
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Carrier Frequency Offset

•
 

Difference in reference frequency between transmitter 
and receiver

•
 

Present in all pratical radio systems
•

 
Relatively easy to understand

•
 

Most commonly studied and compensated front-end 
impairment: nice study case for today.

TX RX
data in data out

fc fc +∆f
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Carrier Frequency Offset – system model

fc,1 fc,2

∆f = fc,2 − fc,1carrier frequency offset (CFO):

received time-domain signal: t̂m(n) = tm(n) exp (j2π∆fTs(mNs + n))
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CFO – received signal
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CFO – influence (I)

xm = (FΥ⊗ INr)Emym
= (FΥ⊗ INr)EmĞ(ΘF−1 ⊗ INt)sm + nm
= (Gm ⊗ INr)Hsm + nm , (1)

fc,1 fc,2

Em = diag(em(0), em(1), . . . , em(Ns − 1))⊗ INr
em(n) = exp (j2π∆fTs(mNs + n))

DFT CP removal phase shifts

CP add
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CFO – influence (II)

•
 

Influence of CFO in (MIMO) OFDM systems
–

 
rotation of the received constellation point after the DFT 

–
 

inter-carrier interference  (ICI)

xm = (Gm ⊗ INr)Hsm + nm
= (γ0INcNr)Hsm + (Gm − γ0INcNr)Hsm + nm

γq =
sin(π(δ−q))

Nc sin(
π
Nc
(δ−q))e

j
π(Nc−1)

Nc
(δ−q)ej

2πδ
Nc

(mNs+Ng) δ = ∆fNcTs

Gm =

⎛⎜⎜⎜⎝
γ0 γ−1 . . . γ−(Nc−1)
γ1 γ0 . . . γ−(Nc−2)
...

...
. . .

...
γNc−1 γNc−2 . . . γ0

⎞⎟⎟⎟⎠
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Frequency synchronization (FS) 

•
 

Estimate
 

the CFO and correct
 

for its influence
•

 
Time or frequency domain approach?

•
 

The phase difference between two (repeated) samples 
is linear dependent on CFO

•
 

Frequency offset estimation by correlation:

xm = (γ0INcNr)Hsm + (Gm − γ0INcNr)Hsm + nm

ŷm(n) = ym(n) exp (j2π∆fTs(mNs + n)) + vm(n)time:

frequency:

tm(n+Np) = tm(n) exp (j2π∆fTsNp)

∆f =
∠PNp−1

n=0 tm(n+Np)t
∗
m(n)

2πTsNp
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FS – time domain

•
 

Use preamble (proposed for SISO [Moose95, Schmidl97])
–

 
Also used for channel estimation

–
 

Correlation repeated symbols is measure for CFO

Preamble Data

TX1

TX2

TX1

TX2

•
 

Use of Cyclic prefix (proposed for SISO [VanDeBeek97])
–

 
Poor performance in high delay spread channel (due to ISI)

–
 

No additional overhead

CP CP

CP CP

Np
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FS – frequency domain (I)

•
 

Using pilot carriers
–

 
All carriers in a symbol experience the same rotation: 
estimate and rotate back.

–
 

using the relation between the phase rotations of the different 
symbols to estimate CFO: correct in time domain

/ Rotating back in freq. domain does not correct for ICI

γ0,n ≈ exp(jϑ1)OFDM 
symbol n

OFDM 
symbol n

OFDM 
symbol n+1

OFDM 
symbol n-1

γ0,n ∼ exp(jα∆f)

γ0,n−1 ∼ exp(j(α− β)∆f)

γ0,n+1 ∼ exp(j(α+ β)∆f)

BPSK symbols as pilot
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FS – blind techniques (I)

•
 

Use detected data as “pilots”
 

for phase of CFO 
estimation: decision directed

data
detection

phase/CFO 
estimation I

Q

phase/CFO 
correction

phase/CFO 
correction

data
detection

•
 

Maximum detectable offset depends on used 
constellation: phase ambiguity

correlation-based



63Tim Schenk (tim.schenk@philips.com), June 8, 2007

FS – blind techniques (II)

•
 

ICI creates correlation between subcarriers
•

 
Find CFO estimate that minimizes this correlation, using a cost 
function like:

TX signal /
no CFO 
RX signal

CFO-impaired
 RX signal

xm(k) = γ0H(k)sm(k) +
P

κ,κ6=k γk−κH(κ)sm(κ) + nm(k)

xm(k) = H(k)sm(k) + nm(k)

xm(k) =
P

κ,κ6=k γk−κH(κ)sm(κ) + nm(k)

xm(k) = nm(k)

∆f̂ = argmin∆f
P
k∈K

xm(k)W(∆f)xm

weighting
 matrix

subset of carriers
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FS - performance (I)

•
 

As example we look at preamble-based technique
•

 
Maximum CFO that can be estimated is limited by 
distance between correlated samples

•
 

MSE decreases with increasing
•

 
For MIMO sum the correlation

 outputs to achieve MRC like
 performance: not averaging of 

estimates!

|δmax| = |θmax|Nc/2πNp = Nc/2Np

Np

δ = ∆fNcTs
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c
 

c
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FS - performance (II)

•
 

Results from theory and 
simulations for 1x1 and 
4x4 AWGN / multipath

•
 

Uncorrelated multipath 
channels, exp. PDP, 
Rayleigh fading every tap.

•
 

Preamble-based 
estimation, length constant

•
 

IEEE 802.11a parameters
•

 
Degradation due to 
frequency fading is smaller 
in MIMO case.

•
 

CFO

4X4

1X1
Theory

δ = 0.2

MSEδ,AWGN ≈ N2
c

(2π)2NrN
3
pSNR
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FS – MSE performance improvement

•
 

Improvement in MSE 
compared to the SISO 
version.

•
 

When frequency diversity 
arises, the gain of space 
diversity reduces.

•
 

Allows for reduction of 
preamble length for higher 
order MIMO (for CFO 
estimation)
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0
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CFO/FS in (MIMO) OFDM – Additional reading

•
 

Moose, “A technique for orthogonal frequency division 
multiplexing frequency offset correction”, IEEE Trans. on 
Commun.,

 
Oct 1994.

•
 

Schmidl, et al., “Robust frequency and timing synchronization for 
OFDM,”

 
IEEE Trans. on Commun., 1997. 

•
 

Yingwei Yao et. al., “Blind carrier frequency offset estimation in 
SISO, MIMO, and multiuser OFDM systems,”

 
IEEE Trans. on 

Commun., Jan. 2005
•

 
Schenk et al., “Frequency Synchronization for MIMO OFDM 
Wireless LAN Systems,”

 
Proc. VTC-Fall 2003.

•
 

Tureli et al., “Multicarrier synchronization with diversity,”
 Vehicular Technology Conference, 2001. Proc. IEEE VTC-Fall 

2001.
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Phase Noise

•
 

Imperfections in RF oscillators have big impact on 
(MIMO) OFDM performance

•
 

Amplitude disturbances in RF oscillators are marginal
•

 
Random frequency deviation of RF carrier are often 
modelled as excess phase deviation: phase noise.

•
 

Oscillator stabillity becomes larger issue for low-cost 
implementations (crystal less) and high carrier 
frequencies 

dB
C

/H
z

dB
C

/H
z

ideal realistic

fc fc
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Influence of carrier frequency on Phase Noise

Figure: Collected phase-noise data of fully integrated VCOs

Li, et.al, (Ericsson AB), “High-frequency 
SiGe

 

MMICs

 

−

 

an Industrial Perspective”
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xm = (FΥ⊗ INr)((ERX,m ⊗ INr)Ğ(ETX,m ⊗ INt)(ΘF−1 ⊗ INt)sm + vm)

Phase Noise – system model

X ∈ {TX,RX}

DFT CP removal

phase noise vector

Add CP

andwith
EX,m = diag{aX,m(0), aX,m(1), . . . , aX,m(Ns − 1)}

aX,m(n) = aX(mNs + n)

aTX(t) = ej{2πfct+θTX(t)}

aRX(t) = e−j{2πfct−θRX(t)}
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common phase 
error (CPE)
= average PN over OFDM symbol

PN – influence (I)

GTX,m = FΥETX,mΘF
−1 , (1)

GRX,m = FΥERX,mΘF
−1 . (2)

γXk−l,m =
1
Nc

PNc−1
i=0 ejθX,m(Ng+i)e−j

2π{k−l}i
Nc

xm =

γ0,mz }| {
γRX0,mγ

TX

0,mHsm + ξm + nm

xm = (FΥ⊗ INr)((ERX,m ⊗ INr)Ğ(ETX,m ⊗ INt)(ΘF−1 ⊗ INt)sm + vm)
= (GRX,m ⊗ INr)H(GTX,m ⊗ INt)sm + nm (1)

where

with

GX,m =

⎡⎢⎢⎢⎣
γX0,m γX1,m · · · γXNc−1,m
γX−1,m γX0,m · · · γXNc−2,m
...

...
. . .

...
γX−Nc+1,m γX−Nc+2,m . . . γX0,m

⎤⎥⎥⎥⎦

inter-carrier interference (ICI)

RX PN influence TX PN influence

phase noise
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PN – influence (II)

SSB representation of PN

β log scale

po
w

er
 d

en
si

ty
 (d

Bc
/H

z)

Frequency

-20 dB/decade
fc

High
 

fc

Low
 

fc

xm = γ0,mHsm + ξm + nm
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CPE – ML estimation and correction

•
 

Phase rotation due to CPE hase largest impact on 
performance → estimation and correction

•
 

Pilots are “required”, since 1 estimation per OFDM symbol
•

 
Let us derive the Maximum Likelihood Estimator (MLE). The 
error term is given by

xm = γ0,mHsm + ξm + nm γ0,m =
1
Nc

Nc−1P
i=0

ejθm(Ng+i)with

zm = xm − γ0,mHsm = ξm + nm

•
 

Expression for ICI includes H
 

so can exhibit (spatial) 
correlation.

•
 

If no correlation: MLE reduces to least-squares estimator 
(LSE).
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CPE – estimation performance (I)

••
 

PP
 

PNPN

 

= −30 dBc
 

and 
β

 
= 200 kHz.

•
 

Independent Rayleigh
 

fading, 
spatial correlation.

•
 

IEEE 802.11a based: 
64 subcarriers, 20 MHz, 
64-QAM, 4 pilots, no AWGN,

 no coding, no AWGN.
•

 
Performance equal for no 
correlation, MLE better for 
correlated channels -3 -2 -1 0 1 2 3

0
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P
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ss
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LS: uncorrelated
ML: uncorrelated
ML: ρ = 0.9  

LS: ρ = 0.9  

θest - θ (degrees)

ECDF of the error in estimation of 
CPE for LS and ML estimator for 2x2.
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PN spectrum w/wo compensation

10-3 10-2 10-1 100 101

-120

-100

-80

-60

-40

-20

0

Normalized frequency δ

dB

PN Spectrum
Suppr by comp
Comp PN Spectrum

PN spectrum before/after compensation,
 

 
β

 
=3.2·10-2,

 
PPPN PN =-30 dBc.

dB
 / 

 d
B

c/
H

z

•
 

Using the estimated values 
of the CPE, we compensate 
the received signal.

•
 

From that we find 
suppression and the 
resulting PN spectrum after 
compensation.

•
 

Clearly lower frequencies in 
the PN spectrum are 
suppressed.

x̃m = γ̂∗0,mxm

≈ Hsm + ξ0m + n0m
= γ̂∗0,mγ0,mHsm + γ̂∗0,mξm + γ̂∗0,mnm
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PN – inter-carrier interference (ICI)

•
 

ICI term generally assumed to have a zero-mean complex 
Gaussian distribution → Central Limit Theorem

•
 

This is, however, not true and results in an underestimation of the 
bit-error probability.

 
[Schenk, vd Hofstad, et al. Trans. Wirel. Comm., 2007]

x = Hs+ n + ξwell studied
 problem

ICI

ξm(k) =
Nc−1P
l=0,l 6=k

γk−l,msm(l)

s1s0
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Distribution of the ICI

•
 

ICI distribution has thicker 
tails than Gaussian distr. 
with same mean & var.

•
 

Generally applied 
Gaussian approximation 
yields underestimation of 
BEP → under specification 
of oscillator.

•
 

CLT does not hold due to 
fast decrease of

•
 

Correct limit distribution 
available in Trans. 
WComm. Paper.

γk

16-QAM

64-QAM

Results for 1x1 802.11a-like system
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BER-impact of ICI in MIMO OFDM

•
 

Study of BER performance for linear MIMO system applying ZF-
 detection.

= s(k) +Ξ(k) +H†(k)n(k)

ŝ(k) = H†(k)x(k) = s(k) +H†(k)ξ(k) +H†(k)n(k)

•
 

For (dominant) TX phase noise, the ICI-caused error term can be 
written as

•
 

For (dominant) RX phase noise, the ICI-caused error term can be 
written as

no influence of channel

interaction between 
carrier k

 
and l

Ξ(k) =
PNc

l=1,l 6=k γ
TX

k−ls(l)

Ξ(k) = H†(k)
PNc

l=1,l 6=k γ
RX

k−lH(l)s(l)

Flat fading:

Independent fading: σ2Ξ(k) = σ2s tr
n
E
h¡
H(k)HH(k)

¢†ioPNc
l=1,l 6=k E

h¯̄
γRXk−l

¯̄2i
complex inverse 
Wishart

 
distr.

σ2Ξ(k) = σ2s
PNc

l=1,l 6=k E
h¯̄
γTXk−l

¯̄2i
=

2σ2sπβTs(N
2
c−1)

3Nc

σ2Ξ(k) = σ2s
PNc

l=1,l 6=k E
h¯̄
γRXk−l

¯̄2i
=

2σ2sπβTs(N
2
c−1)

3Nc

for Nr > Nt

σ2Ξ(k) =
Nt

Nr−Ntσ
2
s

PNc
l=1,l 6=k E

h¯̄
γRXk−l

¯̄2i
=

2σ2sπβTsNt(Nr−Nt)(N2
c−1)

3Nc
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c
 

c

BER-impact ICI – numerical

Flat fading, no PN (dashed), 
β

 
= 1000 Hz (solid), 64 QAM

Independent fading, β
 

= 1000 Hz, 
TX PN (solid), RX PN (dashed), 

64 QAM
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ICI – estimation and suppression (I)

•
 

More terms of PN terms 
can be estimated than 
CPE only, using DFT 
bases.

•
 

Only lower orders of 
are of importance. First 
harmonics are most 
important

•
 

Estimation requires too 
much pilot data →

 decision direct approach. 10 20 30 40 50 60
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Phase noise trajectory

0-th Order approximation (CPE)

1st Order approximation 

2nd Order approximation

samples
Figure: Denis Petrovic, Rhode & Schwarz

γ0

γ0, γ1, γ−1

γ0, γ1, γ−1, γ2, γ−2

GX,m =

⎡⎢⎢⎢⎣
γX0,m γX1,m · · · γXNc−1,m
γX−1,m γX0,m · · · γXNc−2,m
...

...
. . .

...
γX−Nc+1,m γX−Nc+2,m . . . γX0,m

⎤⎥⎥⎥⎦xm = (GRX,m ⊗ INr)Hsm + nm

γk
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ICI – estimation and suppression (II)

•
 

Decision directed approach. 
•

 
Aims to estimate phase noise waveform.

•
 

Performance improvement compared to standard CPE correction
→ sensitive to fading channels

Step 3Step 2Step 1 Iterate

Figure: Denis Petrovic, Rhode & Schwarz

OFDM
Dem

Estimate

CPE 
Correction

Estimate Deconv Viterbi

Dem 
bits

Demodulator

γ0

x
γk

ŝ ξ̂

iterate

yes

Reconstruct
symbols

(1)

(2)

TX
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PN in (MIMO) OFDM – Additional reading

•
 

Pollet, et al., “BER sensitivity of OFDM systems to carrier frequency 
offset and Wiener phase noise,”

 
IEEE Trans. on Commun., 

Feb./Mar./Apr. 1995. 
•

 
Steendam et al., “The effect of carrier phase jitter on the performance of 
OFDMA systems,”

 
IEEE Trans. Comm., April 1998.

•
 

Piazzo, et al., “Analysis of phase noise effects in OFDM modems,”
 

IEEE 
Trans. on Commun., Oct. 2002.

•
 

Casas, et al., “Time domain phase noise correction for OFDM signals,”
 IEEE Trans. on Broadcasting, Sept. 2002.

•
 

Petrovic, et. al, “Intercarrier interference due to Phase Noise in OFDM -
 estimation and suppression,”

 
Proc. IEEE VTC-Fall 2004.

•
 

Schenk, et al., “Influence and suppression of phase noise in multi-
 antenna OFDM”, Proc. IEEE VTC-Fall 2004.

•
 

Schenk, et al., “Distribution of the ICI term in Phase Noise impaired 
OFDM systems,”

 
IEEE Trans. Wirel. Comm., April 2007.
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Summary – Part II

•
 

Digital compensation requires good understanding of 
RF impairments

•
 

Both CFO and Phase Noise introduce 
–

 
constellation rotation, and

–
 

inter-carrier interference
•

 
Different estimation and compensation approaches 
have been presented
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Part III: IQ imbalance and Nonlinearities

•
 

IQ imbalance
–

 
What is the influence?

–
 

How to treat it?
•

 
Nonlinearities

–
 

What is the influence?
–

 
How to treat it?
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Transceiver structure - impairments

Digital
basebandVCO

LNA ADC I

ADC Q

LPF I

LPF Q

DAC I

Digital
baseband

DAC Q

VCO BPF

PA

IQ imbalance nonlinearities

fc,2

fc,1
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IQ mismatch

Frequency Independent

Frequency Selective

•
 

Direct-conversion enables monolithic integration
•

 
Quadrature

 
mixing is performed in analog part. Can 

result in IQ mismatch: Phase and amplitude difference 
between I and Q arms

•
 

Occurs in TX and RX, varies per front-end, 
time-invariant
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Influence of IQ imbalance (I)

TX baseband RX RF RX baseband

•
 

Influence: limited suppression of mirror
•

 
Mirror signal lies in-band for direct-conversion system

•
 

For analysis: IQ imbalance frequency independent, but 
varies per front-end

−k k k k−k −k



88Tim Schenk (tim.schenk@philips.com), June 8, 2007

Influence of IQ imbalance (II)

•
 

Influence of moderate IQ imbalance on QPSK 
modulation
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Influence of IQ imbalance (II)

TX Channel RX

sk

Nt × 1
xk

Nr × 1

Nr ×Nt

Hk

s∗−k x∗−k
H∗−k

xk = Hksk
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Influence of IQ imbalance (II)

TX Channel RX

sk

Nt × 1
xk

Nr × 1

Nr ×Nt

Hk

s∗−k x∗−k
H∗−k

K1

K1

K2

K2

xk = K1Hksk +K2H
∗
−ks
∗
−k
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Influence of IQ imbalance (II)

TX Channel RX

sk

Nt × 1
xk

Nr × 1

Nr ×Nt

Hk

s∗−k x∗−k
H∗−k

xk = HkG1sk +HkG
∗
2s
∗
−k

G1

G∗1

G∗2

G2
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Influence of IQ imbalance (II)

TX Channel RX

sk

Nt × 1
xk

Nr × 1

Nr ×Nt

Hk

s∗−k x∗−k
H∗−k

K1

K1

K2

K2

xk = (K1HkG1 +K2H
∗
−kG2)sk + (K2H

∗
−kG

∗
1 +K1HkG

∗
2)s
∗
−k

G1

G∗1

G∗2

G2
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MIMO processing – Zero Forcing

•
 

We apply
 

zero-forcing
 

MIMO detection, using
 

the 
estimated

 
MIMO channel

 
matrix

•
 

The estimated
 

channel
 

matrix is given
 

by

•
 

The
 

estimated
 

TX vector is than
 

given
 

by

•
 

The
 

error
 

in the estimation
 

is given
 

by
εt,k = Ges

∗
−k + (HkG1)

†
nk

s̃k = H̃
†
kxk = sk + εk

εr,k = H
†
kKeH

∗
−ks
∗
−k +H

†
k

¡
Ken

∗
−k + nk

¢ Ge = G
†
1G
∗
2

Ke = K
†
1K2

H̃k = K1HkG1 +K2H
∗
−kG2

where

where
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Performance analysis – TX IQ imbalance

•
 

For
 

a given
 

IQ imbalance
 

and mirror
 

signal, we have a “shift”
 of

 
the constellation.

•
 

If
 

me assume
 

M-QAM
 

modulation, we can
 

seperately
 

study
 

the 
real

 
and imaginairy

 
part of the constellation

εt,k = Ges
∗
−k + (HkG1)

†
nk

“Regular”
 

noise
 

term
Scaled

 
& rotated

 constellation
 

points

dR

s1 s4s3s2

P de,M-QAM,Es
= 1 −

³
1− P dR

e,
√
M-PAM,Es/2

´ ³
1 − P dI

e,
√
M-PAM,Es/2

´
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Performance analysis – RX IQ imbalance

•
 

For
 

complex normally
 

distributed
 

channel:
and         approximately

 
i.i.dÆWe can treat the leakage as an

extra noise term
•

 
Shown to be valid assumption by [Windisch_ICC2006]

•
 

We can calculate an effective SNR

“Regular”
 

noise
 

termLeakage
 

from
 

mirror

εr,k = H
†
kKeH

∗
−ks
∗
−k +H

†
k

¡
Ken

∗
−k + nk

¢
Extra noise

 
term

H−kHk

s1 s4s3s2
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Performance analysis – cont’d

•
 

Symbol-error rate (SER) calculation procedure:
1) For given SNR calculate influence of shift
2) Calculation of the effective SNR
3) Integration over the distribution of the SNR (influence of channel)

•
 

We derived closed form solutions for the SER
–

 
For TX IQ imbalance

–
 

For RX IQ imbalance 
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TX IQ imbalance – Numerical results (I)

•
 

AWGN channel
 performance

•
 

Analytical
 

results
 

in lines
 and simulation

 
results

 
in 

markers.
•

 
No flooring

 
until

 
“average 

realization”
 

of constellation
 is shifted

 
outside

 
the 

decision
 

region.
•

 
For

 
AWGN channel

 influence
 

of TX/RX 
IQ

 
imbalance

 
is similar. SER performance, TX IQ imbalance and an 1x1 

AWGN channel, 64-QAM.

{gT,φT}
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TX IQ imbalance – Numerical results (II)

•
 

Rayleigh-faded
 

channel, 
independent per subcarrier

•
 

1x1(solid lines), 2x2
 (dashed lines) and

 
2x4 

(dash-dot lines)
•

 
Analytical

 
results

 
in lines

 and simulation
 

results
 

in 
markers.

•
 

TX
 

IQ results in SNR shift 
of the SER curve.

SER performance, TX IQ imbalance, Rayleigh 
faded channel 1x1 (solid lines), 2x2 (dashed lines) 

and 2x4 (dash-dot lines) 4-QAM system.

{gT,φT}
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RX IQ imbalance – Numerical results

•
 

Rayleigh-faded
 

channel, 
independent per subcarrier

•
 

1x1(solid lines), 2x2
 (dashed lines) and

 
2x4 

(dash-dot lines)
•

 
Analytical

 
results

 
in lines

 and simulation
 

results
 

in 
markers.

•
 

No degradation at low 
SNR, but flooring at high 
SNR.

•
 

RX IQ imbalance less 
destructive (than TX) for 
low SNRs, and more 
destructive for high SNRs.

SER performance, RX IQ imbalance, Rayleigh 
faded channel 1x1 (solid lines), 2x2 (dashed lines) 
64-QAM system and 2x2 4-QAM (dash-dot lines).

{gR,φR}
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Compensation IQ imbalance

•
 

Correct for the channel between carrier k
 

and -k. Problem goes 
from Nr

 

xNt problem to 2Nr

 

x2Nt problem.
•

 
Either estimate the 2Nr

 

x2Nt channel and compensate.
•

 
Or estimate Nr

 

xNt channel + IQ imbalance parameters, and 
compensate.

sk

s∗−k
x∗−k

A

B

C

D

E

F

G

H s̃∗−k

s̃k
xkxk
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Preamble design

•
 

Preamble used for MIMO channel and IQ imbalance 
matrices estimation (H(k),K1

 

,K2
 

,G1
 

,G2
 

)
 →Approach exploits that imbalance matrices are time-

 
and 

frequency-invariant
•

 
Or preamble can be applied for estimation of the 
effective channel

•
 

Orthogonality
 

required:
–

 
between carrier and mirror

–
 

between TX branches

•
 

We propose the use of Hadamard
 

matrices

c
-kk

d1 c

c -cd2

sk

 

=s-k

 

→ Ck
+

sk

 

=-s-k

 

→
 

Ck
-
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100
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Estimation TX IQ imbalance

•
 

Effective channel estimates
Ck

+ = Hk
Ck

-

 
= Hk

 

(G1

 

-G2
*)  = Hk

 

gT

 

exp(jφT

 

)
•

 
IQ imbalance estimates
φT = ∠{(Ck

+

 
)-1Ck

-}
gT

 

= |(Ck
+

 
)-1Ck

-|
•

 
Improvement of estimates:

–
 

averaging over the carriers
–

 
averaging over

 
P packets

•
 

Mean-squared error (MSE) results 
for 2x2 extension IEEE 802.11a.

•
 

rms
 

delay spread = 50 ns.
 φT

 

= diag{3◦,−3◦}
gT

 

= diag{1.1, 0.9}. 

φT

gT

Average SNR per RX antenna (dB)
M

SE
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BER RX IQ imbalance

•
 

2x2 MIMO system applying 
Zero-Forcing estimation, 
64-QAM modulation 
and no coding.

•
 

φR
 

= diag{3◦,−3◦}
 

and gR
 

= 
diag{1.1, 0.9}. rms

 
delay 

spread = 50 ns.
•

 
For regarded SNR range 
perfect compensation of the 
effect

•
 

Same possible for TX and 
TX/RX

Average SNR per RX antenna (dB)
B

ER
0 10 20 30 40 50

10-3

10-2

10-1

100

IQ imb., no comp
No IQ imb.
P=1
P=100
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Adaptive Filter based compensation

•
 

No estimation but adaptive filtering (AF) based compensation
•

 
Especially applicable for frequency dependent IQ imbalance 
→ too many pilots required

•
 

LMS/RLS-algorithm used to update of weighting matrix W
•

 
Implementation can be limited to outer carriers

Update
algorithm

Slicing

•
 

Redetection can be 
applied to improve 
convergence 
behavior

xk

x∗−k Wk

ek
e−k

s̃k

s̃−k
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Summary: IQ imbalance

•
 

IQ imbalance in ZIF systems results in leakage between 
subcarrier

 
and its mirror carrier.

•
 

Two data-aided estimation/compensation approaches are 
proposed: 

–
 

Using effective channel
–

 
Estimation of the IQ imbalance and wireless channel parameters

•
 

Latter exploits that imbalance matrices are time-
 

and 
frequency-invariant

•
 

Frequency dependent IQ imbalance compensated using 
adaptive MIMO filtering

•
 

Algorithms can significantly reduce the influence of IQ 
mismatch
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IQ imbalance in (MIMO) OFDM – Additional reading

•
 

M. Valkama, et. Al., “Advanced methods for I/Q imbalance 
compensation in communication receivers,”

 
IEEE Trans. on Signal 

Proc., Oct. 2001.
•

 
A. Tarighat, et al., “MIMO OFDM receivers for systems with IQ 
imbalances,”

 
IEEE Trans. on Signal Proc., Sept. 2005.

•
 

M. Windisch et al., “Standard-independent I/Q imbalance compensation 
in OFDM direct-conversion receivers,”

 
in Proc. 9th InOWo Workshop, 

Sept. 2004.
•

 
E. Tsui and J. Lin, “Adaptive IQ imbalance correction for OFDM systems 
with frequency and timing offsets,”

 
in Proc. IEEE Globecom

 
2004

•
 

T.C.W. Schenk, et al., “Estimation and compensation of TX and RX IQ 
imbalance in OFDM based MIMO systems,”

 
in Proc. IEEE RWS 2006, 

Jan. 2006.
•

 
T.C.W. Schenk, et al., “Performance impact of IQ mismatch in direct-

 conversion MIMO OFDM transceivers”,
 

Proc. IEEE RWS 2007, Jan 
2007.
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Nonlinearities

•
 

Mainly in PAs
 

and LNAs
•

 
OFDM signals exhibits a high peak-to-average power ratio

•
 

Depends on the number of carriers and modulation depth

time

po
w

er

Input Power

O
ut

pu
t P

ow
er
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100

X (dB)

P
(P

A
P

R
 ≥

 X
)

CCDF for TX PAPR, QPSK, oversampling factor = 8

64 subcarriers
512 subcarriers
1024 subcarriers
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Amplitude and phase distortion
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Influence of nonlinearities (I)

•
 

Increasing the back-off (BO) of 
the signals on the amplifier

Æ very power inefficient

BO = 11 dBBO = 5 dBBO = 3 dB
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Influence of nonlinearities (II)

•
 

Clipping/Nonlinear distortion results in spectral 
regrowth.

Decreasing BO
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Signal modelling + MIMO processing

•
 

Gaussian
 

signal
 

input to
 

a nonlinearity
 

u
 

[Bussgang52]:

•
 

A MIMO OFDM signal
 

is approximately
 

Gaussian, thus

•
 

For
 

TX nonlinearities
 

we can
 

write
 

the RX signal
 

as

•
 

For
 

RX nonlinearities
 

we can
 

write
 

the RX signal
 

as

•
 

After
 

MIMO processing with
 

perfect CSI we get

ud = g(u) = αu+ d

ud = g(u) = (I⊗ α)u+ d

xt = H(INc
⊗ αt)s+Het + n

xr = (INc
⊗ αr)Hs+ eR + n

s̃ = H†xr = (INc ⊗ αr)s+H†(er + n) = ŝr + εr

s̃ = H†xt = (INc
⊗ αt)s+ et +H†n = ŝt + εt
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Performance analysis – nonlinearities

•
 

Bit-error
 

rate
 

calculation
 

procedure:
1) For

 
given

 
SNR calculate

 
influence

 
of scaling

 
(influence

 
M-QAM)

2) Calculation
 

of the effective
 

SNR
3) Integration

 
over the distribution

 
of the SNR (influence

 
of channel).

s̃ = H†xr = (INc
⊗ αr)s+H†(er + n) = ŝr + εr

s̃ = H†xt = (INc
⊗ αt)s+ et +H†n = ŝt + εt

scaling “regular”
 

noise
 

termextra noise
 

term
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Numerical results (I)

•
 

Rayleigh
 

faded
 

channel
•

 
Clipping

 
amplifier

•
 

Solid
 

lines
 

are analytical
 results

 
and markers are 

from
 

simulations.
•

 
1x4 results

 
in black and 

2x4 results
 

in blue
•

 
Flooring

 
TX nonlinearities

 independent of MIMO 
configuration.

•
 

RX nonlinearities
 

benefit 
from

 
spatial

 
diversity.SER performance for Rayleigh channel.

1x4 (dashed) and 2x4 (solid) 16-QAM systems
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Numerical results (II)

•
 

Analytical
 

results
 

for
 

both
 TX nonlin.

 
(solid

 
lines) 

and
 RX

 
nonlin.

 
(dashed

 
lines).

•
 

Clipping amplifier with 3dB 
input backoff

•
 

Different MIMO 
configurations.

•
 

Impact depends on MIMO 
configuration.

SER performance for Rayleigh channel.
RX nonlinearities (dashed) and TX 

nonlinearities  (solid) 16-QAM systems
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Nonlinearities – Mitigation (I)

1) Decreasing the PAPR of the OFDM signals
•

 
Block coding with Fourier like (Golay

 
codes)

–
 

Error correcting capabilities less optimal
•

 
Selective mapping Æ Spatial shifting
–

 
Significant reduction

–
 

Computational complex
–

 
Introduces small overhead

•
 

“Smart”
 

clipping
–

 
Reduces spectral regrowth

–
 

Introduces extra distortion in the band
•

 
Constellation shaping

•
 

……

Example on next slides
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Spatial shifting + phase shifting

• SS: Reshuffeling of groups of subcarriers between TX branches.
• PS: Sum the groups with different phases
• Notify RX of chosen phases and shift → extra overhead
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Performance of SS/PS

•
 

Number of subcarrier 
groups = P.

•
 

With increasing P
 performance increases, 

however overhead is also 
increased.

•
 

No degradation in 
performance when SS/PS is 
transmitted correctly.
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Nonlinearities – Mitigation (II)

II) Compensation for 
nonlinearities

•
 

Digital baseband
 

pre-distortion (TX)
–

 
Nonlinear transfer found in calibration

 procedure
–

 
Gaining popularity 

–
 

Does not solve the power limiting

•
 

Recovering techniques (in the baseband
 

RX)
–

 
Interference term is function of the data

–
 

Can be computational complex
–

 
How do we get the nonlinear transfer of the total system?

Input Power

O
ut

pu
t P

ow
er

predistortion

Example on next slides
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Estimation using preamble

•
 

Constant modulus part “L Train”
 

for estimation MIMO 
channel.

•
 

High PAPR part “NL Train”
 

for estimation multiple 
nonlinear transfers.
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Linear Channel estimation

•
 

Due to constant modulus property channel can be 
estimated upto

 
constant diagonal matrix

•
 

Constant can be estimated from nonlinearity and 
corrected for or corrected as part of nonlinearity.

training symbol
CP additionRX OFDM proc. CIR NL



121Tim Schenk (tim.schenk@philips.com), June 8, 2007

Nonlinearity estimation

•
 

Estimated nonlinear distorted sequence is given by:

training symbolRX OFDM proc. NL

CIR

•
 

Which can be written in polynomial form as
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Nonlinearity estimation (cont’d)

•
 

This can be written in matrix notation as:

•
 

The estimated parameters of the nonlinearity are then given by

•
 

Using that linear part are in the MIMO channel estimate, we find:
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Compensation approaches

1) “Multiple”
 

received signal with estimated inverse 
nonlinearity

2) Project nonlinearity on new basis. Then interpolation 
of received signal

3) Iterative distortion removal (IDR)
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Iterative distortion removal

•
 

Initial detection
•

 
Estimate  distrotion term

•
 

Substract distortion term
•

 
Apply a redetection

•
 

Iterate
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Numerical results (cont’d)

•
 

2x4, uncoded, 64-QAM
•

 
Linear and nonlinear as 
reference

•
 

Estimated MIMO channel
•

 
postdistortion

 
(PD) with 

estimated inverse
•

 
Lagrange interpolation 
using estimated 
nonlinearity (5 point basis)

•
 

3 iteraterations
 

for IDR
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Summary – nonlinearities 

•
 

Nonlinearities create decrease SNR and constelation
 scaling in OFDM systems

•
 

Two major approaches:
–

 
Reduce PAPR of signals

–
 

Compensate for (influence) nonlinearities
•

 
Some compensation approaches have been 
presented, which can significantly reduce the influence 
of the nonlinearities.
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Nonlinearities in (MIMO) OFDM – Additional reading

•
 

E. Costa, et al., “Impact of amplifier nonlinearities on OFDM 
transmission system performance,”

 
IEEE Commun. Letters, Feb. 1999.

•
 

D. Dardari, et al., “A theoretical characterization of nonlinear distortion 
effects in OFDM systems,”

 
IEEE Trans. on Commun., Oct. 2000.

•
 

H. W. Kang, et al., “On compensating nonlinear distortions of an OFDM 
system using an efficient adaptive predistorter,”

 
IEEE Trans. on 

Commun., April 1999.
•

 
H. Chen, et al., “Iterative estimation and cancellation of clipping noise 
for OFDM signals,”

 
IEEE Commun. Letters, July 2003.

•
 

J. Tellado, et al., “Maximum-likelihood detection of nonlinearly distorted 
multicarrier symbols by iterative decoding,”

 
IEEE Trans. on Commun., 

Feb. 2003.
•

 
T.C.W. Schenk, et al., “Receiver-based compensation of transmitter-

 incurred nonlinear distortion in multiple-antenna OFDM systems,”
 

IEEE 
VTC 2007.

•
 

T.C.W. Schenk, et al., “Impact of nonlinearities in multiple-antenna 
OFDM tranceivers,”

 
IEEE SCVT2006. 
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Some things to take home…

•
 

MIMO+OFDM Æ very suitable for high datarate
communications. Basis of many wireless standards.

•
 

OFDM is very sensitive to imperfections of the RF 
front-end.

•
 

Resulting errors are not yet extra noise sources
Æ very distinct behavior.

•
 

Mitigation techniques are promising to decrease to 
requirements on the RF front-end.

•
 

For optimal usage, however, mutual understanding of 
baseband

 
and RF-front-end limitations is essentialÆ

co-design
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Thank you!
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Back-up Slides
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V-BLAST Encoder

1:Nt
Spatial 
DEMUX

..0010..

..1011..
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bits

..011 001 111 010..

Encoder

Encoder

Encoder

…

…

…
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s2 [0] s2 [1] s2 [2] s2 [3]

s3 [0] s3 [1] s3 [2] s3 [3]

Transmitting:

time

sp
ac

e …

…

…

Vertical-BLAST, i.e., MMSE with Decision Feedback (DFB)
and optimal ordering
Example: (Nt ,Nr ) = (3,3)



132Tim Schenk (tim.schenk@philips.com), June 8, 2007

Slicer

V-BLAST Decoder

Assume optimal ordering is performed; without loss of 
generality assume that 
where     is the post-detection SNR of TX stream si
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isρ
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